spark UDTRegistration 源码

  • 2022-10-20
  • 浏览 (252)

spark UDTRegistration 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/types/UDTRegistration.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.types

import scala.collection.mutable

import org.apache.spark.annotation.{DeveloperApi, Since}
import org.apache.spark.internal.Logging
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.util.Utils

/**
 * This object keeps the mappings between user classes and their User Defined Types (UDTs).
 * Previously we use the annotation `SQLUserDefinedType` to register UDTs for user classes.
 * However, by doing this, we add SparkSQL dependency on user classes. This object provides
 * alternative approach to register UDTs for user classes.
 */
@DeveloperApi
@Since("3.2.0")
object UDTRegistration extends Serializable with Logging {

  /** The mapping between the Class between UserDefinedType and user classes. */
  private lazy val udtMap: mutable.Map[String, String] = mutable.Map(
    ("org.apache.spark.ml.linalg.Vector", "org.apache.spark.ml.linalg.VectorUDT"),
    ("org.apache.spark.ml.linalg.DenseVector", "org.apache.spark.ml.linalg.VectorUDT"),
    ("org.apache.spark.ml.linalg.SparseVector", "org.apache.spark.ml.linalg.VectorUDT"),
    ("org.apache.spark.ml.linalg.Matrix", "org.apache.spark.ml.linalg.MatrixUDT"),
    ("org.apache.spark.ml.linalg.DenseMatrix", "org.apache.spark.ml.linalg.MatrixUDT"),
    ("org.apache.spark.ml.linalg.SparseMatrix", "org.apache.spark.ml.linalg.MatrixUDT"))

  /**
   * Queries if a given user class is already registered or not.
   * @param userClassName the name of user class
   * @return boolean value indicates if the given user class is registered or not
   */
  def exists(userClassName: String): Boolean = udtMap.contains(userClassName)

  /**
   * Registers an UserDefinedType to an user class. If the user class is already registered
   * with another UserDefinedType, warning log message will be shown.
   * @param userClass the name of user class
   * @param udtClass the name of UserDefinedType class for the given userClass
   */
  def register(userClass: String, udtClass: String): Unit = {
    if (udtMap.contains(userClass)) {
      logWarning(s"Cannot register UDT for ${userClass}, which is already registered.")
    } else {
      // When register UDT with class name, we can't check if the UDT class is an UserDefinedType,
      // or not. The check is deferred.
      udtMap += ((userClass, udtClass))
    }
  }

  /**
   * Returns the Class of UserDefinedType for the name of a given user class.
   * @param userClass class name of user class
   * @return Option value of the Class object of UserDefinedType
   */
  def getUDTFor(userClass: String): Option[Class[_]] = {
    udtMap.get(userClass).map { udtClassName =>
      if (Utils.classIsLoadable(udtClassName)) {
        val udtClass = Utils.classForName(udtClassName)
        if (classOf[UserDefinedType[_]].isAssignableFrom(udtClass)) {
          udtClass
        } else {
          throw QueryExecutionErrors.notUserDefinedTypeError(udtClass.getName, userClass)
        }
      } else {
        throw QueryExecutionErrors.cannotLoadUserDefinedTypeError(udtClassName, userClass)
      }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AbstractDataType 源码

spark ArrayType 源码

spark BinaryType 源码

spark BooleanType 源码

spark ByteType 源码

spark CalendarIntervalType 源码

spark CharType 源码

spark DataType 源码

spark DateType 源码

spark DayTimeIntervalType 源码

0  赞