kafka ProducerResponseBenchmark 源码
kafka ProducerResponseBenchmark 代码
文件路径:/jmh-benchmarks/src/main/java/org/apache/kafka/jmh/producer/ProducerResponseBenchmark.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.jmh.producer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.protocol.Errors;
import org.apache.kafka.common.requests.AbstractResponse;
import org.apache.kafka.common.requests.ProduceResponse;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Warmup;
import java.util.AbstractMap;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
@State(Scope.Benchmark)
@Fork(value = 1)
@Warmup(iterations = 5)
@Measurement(iterations = 15)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public class ProducerResponseBenchmark {
private static final int NUMBER_OF_PARTITIONS = 3;
private static final int NUMBER_OF_RECORDS = 3;
private static final Map<TopicPartition, ProduceResponse.PartitionResponse> PARTITION_RESPONSE_MAP = IntStream.range(0, NUMBER_OF_PARTITIONS)
.mapToObj(partitionIndex -> new AbstractMap.SimpleEntry<>(
new TopicPartition("tp", partitionIndex),
new ProduceResponse.PartitionResponse(
Errors.NONE,
0,
0,
0,
IntStream.range(0, NUMBER_OF_RECORDS)
.mapToObj(ProduceResponse.RecordError::new)
.collect(Collectors.toList()))
))
.collect(Collectors.toMap(AbstractMap.SimpleEntry::getKey, AbstractMap.SimpleEntry::getValue));
/**
* this method is still used by production so we benchmark it.
* see https://issues.apache.org/jira/browse/KAFKA-10730
*/
@SuppressWarnings("deprecation")
private static ProduceResponse response() {
return new ProduceResponse(PARTITION_RESPONSE_MAP);
}
private static final ProduceResponse RESPONSE = response();
@Benchmark
@OutputTimeUnit(TimeUnit.NANOSECONDS)
public AbstractResponse constructorProduceResponse() {
return response();
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦