airflow mongo_to_s3 源码

  • 2022-10-20
  • 浏览 (468)

airflow mongo_to_s3 代码

文件路径:/airflow/providers/amazon/aws/transfers/mongo_to_s3.py

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import json
import warnings
from typing import TYPE_CHECKING, Any, Iterable, Sequence, cast

from bson import json_util

from airflow.models import BaseOperator
from airflow.providers.amazon.aws.hooks.s3 import S3Hook
from airflow.providers.mongo.hooks.mongo import MongoHook

if TYPE_CHECKING:
    from airflow.utils.context import Context


_DEPRECATION_MSG = (
    "The s3_conn_id parameter has been deprecated. You should pass instead the aws_conn_id parameter."
)


class MongoToS3Operator(BaseOperator):
    """Operator meant to move data from mongo via pymongo to s3 via boto.

    .. seealso::
        For more information on how to use this operator, take a look at the guide:
        :ref:`howto/operator:MongoToS3Operator`

    :param mongo_conn_id: reference to a specific mongo connection
    :param aws_conn_id: reference to a specific S3 connection
    :param mongo_collection: reference to a specific collection in your mongo db
    :param mongo_query: query to execute. A list including a dict of the query
    :param mongo_projection: optional parameter to filter the returned fields by
        the query. It can be a list of fields names to include or a dictionary
        for excluding fields (e.g ``projection={"_id": 0}`` )
    :param s3_bucket: reference to a specific S3 bucket to store the data
    :param s3_key: in which S3 key the file will be stored
    :param mongo_db: reference to a specific mongo database
    :param replace: whether or not to replace the file in S3 if it previously existed
    :param allow_disk_use: enables writing to temporary files in the case you are handling large dataset.
        This only takes effect when `mongo_query` is a list - running an aggregate pipeline
    :param compression: type of compression to use for output file in S3. Currently only gzip is supported.
    """

    template_fields: Sequence[str] = ('s3_bucket', 's3_key', 'mongo_query', 'mongo_collection')
    ui_color = '#589636'
    template_fields_renderers = {"mongo_query": "json"}

    def __init__(
        self,
        *,
        s3_conn_id: str | None = None,
        mongo_conn_id: str = 'mongo_default',
        aws_conn_id: str = 'aws_default',
        mongo_collection: str,
        mongo_query: list | dict,
        s3_bucket: str,
        s3_key: str,
        mongo_db: str | None = None,
        mongo_projection: list | dict | None = None,
        replace: bool = False,
        allow_disk_use: bool = False,
        compression: str | None = None,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        if s3_conn_id:
            warnings.warn(_DEPRECATION_MSG, DeprecationWarning, stacklevel=3)
            aws_conn_id = s3_conn_id

        self.mongo_conn_id = mongo_conn_id
        self.aws_conn_id = aws_conn_id
        self.mongo_db = mongo_db
        self.mongo_collection = mongo_collection

        # Grab query and determine if we need to run an aggregate pipeline
        self.mongo_query = mongo_query
        self.is_pipeline = isinstance(self.mongo_query, list)
        self.mongo_projection = mongo_projection

        self.s3_bucket = s3_bucket
        self.s3_key = s3_key
        self.replace = replace
        self.allow_disk_use = allow_disk_use
        self.compression = compression

    def execute(self, context: Context):
        """Is written to depend on transform method"""
        s3_conn = S3Hook(self.aws_conn_id)

        # Grab collection and execute query according to whether or not it is a pipeline
        if self.is_pipeline:
            results = MongoHook(self.mongo_conn_id).aggregate(
                mongo_collection=self.mongo_collection,
                aggregate_query=cast(list, self.mongo_query),
                mongo_db=self.mongo_db,
                allowDiskUse=self.allow_disk_use,
            )

        else:
            results = MongoHook(self.mongo_conn_id).find(
                mongo_collection=self.mongo_collection,
                query=cast(dict, self.mongo_query),
                projection=self.mongo_projection,
                mongo_db=self.mongo_db,
            )

        # Performs transform then stringifies the docs results into json format
        docs_str = self._stringify(self.transform(results))

        s3_conn.load_string(
            string_data=docs_str,
            key=self.s3_key,
            bucket_name=self.s3_bucket,
            replace=self.replace,
            compression=self.compression,
        )

    @staticmethod
    def _stringify(iterable: Iterable, joinable: str = '\n') -> str:
        """
        Takes an iterable (pymongo Cursor or Array) containing dictionaries and
        returns a stringified version using python join
        """
        return joinable.join([json.dumps(doc, default=json_util.default) for doc in iterable])

    @staticmethod
    def transform(docs: Any) -> Any:
        """This method is meant to be extended by child classes
        to perform transformations unique to those operators needs.
        Processes pyMongo cursor and returns an iterable with each element being
        a JSON serializable dictionary

        Base transform() assumes no processing is needed
        ie. docs is a pyMongo cursor of documents and cursor just
        needs to be passed through

        Override this method for custom transformations
        """
        return docs

相关信息

airflow 源码目录

相关文章

airflow init 源码

airflow dynamodb_to_s3 源码

airflow exasol_to_s3 源码

airflow ftp_to_s3 源码

airflow gcs_to_s3 源码

airflow glacier_to_gcs 源码

airflow google_api_to_s3 源码

airflow hive_to_dynamodb 源码

airflow imap_attachment_to_s3 源码

airflow local_to_s3 源码

0  赞