spark GradientBoostedTreesRunner 源码

  • 2022-10-20
  • 浏览 (235)

spark GradientBoostedTreesRunner 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/GradientBoostedTreesRunner.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.{Algo, BoostingStrategy}
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel
import org.apache.spark.rdd.RDD
import org.apache.spark.util.Utils

/**
 * An example runner for Gradient Boosting using decision trees as weak learners. Run with
 * {{{
 * ./bin/run-example mllib.GradientBoostedTreesRunner [options]
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 *
 * Note: This script treats all features as real-valued (not categorical).
 *       To include categorical features, modify categoricalFeaturesInfo.
 */
object GradientBoostedTreesRunner {

  case class Params(
      input: String = null,
      testInput: String = "",
      dataFormat: String = "libsvm",
      algo: String = "Classification",
      maxDepth: Int = 5,
      numIterations: Int = 10,
      fracTest: Double = 0.2) extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("GradientBoostedTrees") {
      head("GradientBoostedTrees: an example decision tree app.")
      opt[String]("algo")
        .text(s"algorithm (${Algo.values.mkString(",")}), default: ${defaultParams.algo}")
        .action((x, c) => c.copy(algo = x))
      opt[Int]("maxDepth")
        .text(s"max depth of the tree, default: ${defaultParams.maxDepth}")
        .action((x, c) => c.copy(maxDepth = x))
      opt[Int]("numIterations")
        .text(s"number of iterations of boosting," + s" default: ${defaultParams.numIterations}")
        .action((x, c) => c.copy(numIterations = x))
      opt[Double]("fracTest")
        .text(s"fraction of data to hold out for testing.  If given option testInput, " +
          s"this option is ignored. default: ${defaultParams.fracTest}")
        .action((x, c) => c.copy(fracTest = x))
      opt[String]("testInput")
        .text(s"input path to test dataset.  If given, option fracTest is ignored." +
          s" default: ${defaultParams.testInput}")
        .action((x, c) => c.copy(testInput = x))
      opt[String]("dataFormat")
        .text("data format: libsvm (default), dense (deprecated in Spark v1.1)")
        .action((x, c) => c.copy(dataFormat = x))
      arg[String]("<input>")
        .text("input path to labeled examples")
        .required()
        .action((x, c) => c.copy(input = x))
      checkConfig { params =>
        if (params.fracTest < 0 || params.fracTest > 1) {
          failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1].")
        } else {
          success
        }
      }
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  def run(params: Params): Unit = {

    val conf = new SparkConf().setAppName(s"GradientBoostedTreesRunner with $params")
    val sc = new SparkContext(conf)

    println(s"GradientBoostedTreesRunner with parameters:\n$params")

    // Load training and test data and cache it.
    val (training, test, numClasses) = DecisionTreeRunner.loadDatasets(sc, params.input,
      params.dataFormat, params.testInput, Algo.withName(params.algo), params.fracTest)

    val boostingStrategy = BoostingStrategy.defaultParams(params.algo)
    boostingStrategy.treeStrategy.numClasses = numClasses
    boostingStrategy.numIterations = params.numIterations
    boostingStrategy.treeStrategy.maxDepth = params.maxDepth

    val randomSeed = Utils.random.nextInt()
    if (params.algo == "Classification") {
      val startTime = System.nanoTime()
      val model = GradientBoostedTrees.train(training, boostingStrategy)
      val elapsedTime = (System.nanoTime() - startTime) / 1e9
      println(s"Training time: $elapsedTime seconds")
      if (model.totalNumNodes < 30) {
        println(model.toDebugString) // Print full model.
      } else {
        println(model) // Print model summary.
      }
      val trainAccuracy =
        new MulticlassMetrics(training.map(lp => (model.predict(lp.features), lp.label))).accuracy
      println(s"Train accuracy = $trainAccuracy")
      val testAccuracy =
        new MulticlassMetrics(test.map(lp => (model.predict(lp.features), lp.label))).accuracy
      println(s"Test accuracy = $testAccuracy")
    } else if (params.algo == "Regression") {
      val startTime = System.nanoTime()
      val model = GradientBoostedTrees.train(training, boostingStrategy)
      val elapsedTime = (System.nanoTime() - startTime) / 1e9
      println(s"Training time: $elapsedTime seconds")
      if (model.totalNumNodes < 30) {
        println(model.toDebugString) // Print full model.
      } else {
        println(model) // Print model summary.
      }
      val trainMSE = meanSquaredError(model, training)
      println(s"Train mean squared error = $trainMSE")
      val testMSE = meanSquaredError(model, test)
      println(s"Test mean squared error = $testMSE")
    }

    sc.stop()
  }

  private[mllib] def meanSquaredError(
      model: GradientBoostedTreesModel, data: RDD[LabeledPoint]): Double =
    data.map { y =>
      val err = model.predict(y.features) - y.label
      err * err
    }.mean()
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞