spark SchemaPruning 源码

  • 2022-10-20
  • 浏览 (230)

spark SchemaPruning 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/SchemaPruning.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.expressions

import java.util.Locale

import scala.collection.immutable.HashMap

import org.apache.spark.sql.catalyst.SQLConfHelper
import org.apache.spark.sql.types._

object SchemaPruning extends SQLConfHelper {
  /**
   * Prunes the nested schema by the requested fields. For example, if the schema is:
   * `id int, s struct<a:int, b:int>`, and given requested field "s.a", the inner field "b"
   * is pruned in the returned schema: `id int, s struct<a:int>`.
   * Note that:
   *   1. The schema field ordering at original schema is still preserved in pruned schema.
   *   2. The top-level fields are not pruned here.
   */
  def pruneSchema(
      schema: StructType,
      requestedRootFields: Seq[RootField]): StructType = {
    val resolver = conf.resolver
    // Merge the requested root fields into a single schema. Note the ordering of the fields
    // in the resulting schema may differ from their ordering in the logical relation's
    // original schema
    val mergedSchema = requestedRootFields
      .map { root: RootField => StructType(Array(root.field)) }
      .reduceLeft(_ merge _)
    val mergedDataSchema =
      StructType(schema.map(d => mergedSchema.find(m => resolver(m.name, d.name)).getOrElse(d)))
    // Sort the fields of mergedDataSchema according to their order in dataSchema,
    // recursively. This makes mergedDataSchema a pruned schema of dataSchema
    sortLeftFieldsByRight(mergedDataSchema, schema).asInstanceOf[StructType]
  }

  /**
   * Sorts the fields and descendant fields of structs in left according to their order in
   * right. This function assumes that the fields of left are a subset of the fields of
   * right, recursively. That is, left is a "subschema" of right, ignoring order of
   * fields.
   */
  private def sortLeftFieldsByRight(left: DataType, right: DataType): DataType =
    (left, right) match {
      case _ if left == right => left
      case (ArrayType(leftElementType, containsNull), ArrayType(rightElementType, _)) =>
        ArrayType(
          sortLeftFieldsByRight(leftElementType, rightElementType),
          containsNull)
      case (MapType(leftKeyType, leftValueType, containsNull),
          MapType(rightKeyType, rightValueType, _)) =>
        MapType(
          sortLeftFieldsByRight(leftKeyType, rightKeyType),
          sortLeftFieldsByRight(leftValueType, rightValueType),
          containsNull)
      case (leftStruct: StructType, rightStruct: StructType) =>
        val formatFieldName: String => String =
          if (conf.caseSensitiveAnalysis) identity else _.toLowerCase(Locale.ROOT)

        val leftStructHashMap =
          HashMap(leftStruct.map(f => formatFieldName(f.name)).zip(leftStruct): _*)
        val sortedLeftFields = rightStruct.fieldNames.flatMap { fieldName =>
          val formattedFieldName = formatFieldName(fieldName)
          if (leftStructHashMap.contains(formattedFieldName)) {
            val resolvedLeftStruct = leftStructHashMap(formattedFieldName)
            val leftFieldType = resolvedLeftStruct.dataType
            val rightFieldType = rightStruct(fieldName).dataType
            val sortedLeftFieldType = sortLeftFieldsByRight(leftFieldType, rightFieldType)
            Some(StructField(fieldName, sortedLeftFieldType, nullable = resolvedLeftStruct.nullable,
              metadata = resolvedLeftStruct.metadata))
          } else {
            None
          }
        }
        StructType(sortedLeftFields)
      case _ => left
    }

  /**
   * Returns the set of fields from projection and filtering predicates that the query plan needs.
   */
  def identifyRootFields(
      projects: Seq[NamedExpression],
      filters: Seq[Expression]): Seq[RootField] = {
    val projectionRootFields = projects.flatMap(getRootFields)
    val filterRootFields = filters.flatMap(getRootFields)

    // Kind of expressions don't need to access any fields of a root fields, e.g., `IsNotNull`.
    // For them, if there are any nested fields accessed in the query, we don't need to add root
    // field access of above expressions.
    // For example, for a query `SELECT name.first FROM contacts WHERE name IS NOT NULL`,
    // we don't need to read nested fields of `name` struct other than `first` field.
    val (rootFields, optRootFields) = (projectionRootFields ++ filterRootFields)
      .distinct.partition(!_.prunedIfAnyChildAccessed)

    optRootFields.filter { opt =>
      !rootFields.exists { root =>
        root.field.name == opt.field.name && {
          // Checking if current optional root field can be pruned.
          // For each required root field, we merge it with the optional root field:
          // 1. If this optional root field has nested fields and any nested field of it is used
          //    in the query, the merged field type must equal to the optional root field type.
          //    We can prune this optional root field. For example, for optional root field
          //    `struct<name:struct<middle:string,last:string>>`, if its field
          //    `struct<name:struct<last:string>>` is used, we don't need to add this optional
          //    root field.
          // 2. If this optional root field has no nested fields, the merged field type equals
          //    to the optional root field only if they are the same. If they are, we can prune
          //    this optional root field too.
          val rootFieldType = StructType(Array(root.field))
          val optFieldType = StructType(Array(opt.field))
          val merged = optFieldType.merge(rootFieldType)
          merged.sameType(optFieldType)
        }
      }
    } ++ rootFields
  }

  /**
   * Gets the root (aka top-level, no-parent) [[StructField]]s for the given [[Expression]].
   * When expr is an [[Attribute]], construct a field around it and indicate that that
   * field was derived from an attribute.
   */
  private[catalyst] def getRootFields(expr: Expression): Seq[RootField] = {
    expr match {
      case att: Attribute =>
        RootField(StructField(att.name, att.dataType, att.nullable, att.metadata),
          derivedFromAtt = true) :: Nil
      case SelectedField(field) => RootField(field, derivedFromAtt = false) :: Nil
      // Root field accesses by `IsNotNull` and `IsNull` are special cases as the expressions
      // don't actually use any nested fields. These root field accesses might be excluded later
      // if there are any nested fields accesses in the query plan.
      case IsNotNull(SelectedField(field)) =>
        RootField(field, derivedFromAtt = false, prunedIfAnyChildAccessed = true) :: Nil
      case IsNull(SelectedField(field)) =>
        RootField(field, derivedFromAtt = false, prunedIfAnyChildAccessed = true) :: Nil
      case IsNotNull(_: Attribute) | IsNull(_: Attribute) =>
        expr.children.flatMap(getRootFields).map(_.copy(prunedIfAnyChildAccessed = true))
      case s: SubqueryExpression =>
        // use subquery references that only include outer attrs and
        // ignore join conditions as those may include attributes from other tables
        s.references.toSeq.flatMap(getRootFields)
      case _ =>
        expr.children.flatMap(getRootFields)
    }
  }

  /**
   * This represents a "root" schema field (aka top-level, no-parent). `field` is the
   * `StructField` for field name and datatype. `derivedFromAtt` indicates whether it
   * was derived from an attribute or had a proper child. `prunedIfAnyChildAccessed` means
   * whether this root field can be pruned if any of child field is used in the query.
   */
  case class RootField(field: StructField, derivedFromAtt: Boolean,
    prunedIfAnyChildAccessed: Boolean = false)
}

相关信息

spark 源码目录

相关文章

spark AliasHelper 源码

spark ApplyFunctionExpression 源码

spark AttributeSet 源码

spark BloomFilterMightContain 源码

spark BoundAttribute 源码

spark CallMethodViaReflection 源码

spark Cast 源码

spark CodeGeneratorWithInterpretedFallback 源码

spark DynamicPruning 源码

spark EquivalentExpressions 源码

0  赞