spark DetectAmbiguousSelfJoin 源码

  • 2022-10-20
  • 浏览 (222)

spark DetectAmbiguousSelfJoin 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/analysis/DetectAmbiguousSelfJoin.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.analysis

import scala.collection.mutable

import org.apache.spark.sql.{Column, Dataset}
import org.apache.spark.sql.catalyst.expressions.{AttributeReference, AttributeSet, Cast, Equality, Expression, ExprId}
import org.apache.spark.sql.catalyst.plans.logical.{Join, LogicalPlan}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.internal.SQLConf

/**
 * Detects ambiguous self-joins, so that we can fail the query instead of returning confusing
 * results.
 *
 * Dataset column reference is simply an [[AttributeReference]] that is returned by `Dataset#col`.
 * Most of time we don't need to do anything special, as [[AttributeReference]] can point to
 * the column precisely. However, in case of self-join, the analyzer generates
 * [[AttributeReference]] with new expr IDs for the right side plan of the join. If the Dataset
 * column reference points to a column in the right side plan of a self-join, users will get
 * unexpected result because the column reference can't match the newly generated
 * [[AttributeReference]].
 *
 * Note that, this rule removes all the Dataset id related metadata from `AttributeReference`, so
 * that they don't exist after analyzer.
 */
object DetectAmbiguousSelfJoin extends Rule[LogicalPlan] {

  // Dataset column reference is an `AttributeReference` with 2 special metadata.
  private def isColumnReference(a: AttributeReference): Boolean = {
    a.metadata.contains(Dataset.DATASET_ID_KEY) && a.metadata.contains(Dataset.COL_POS_KEY)
  }

  private case class ColumnReference(datasetId: Long, colPos: Int, exprId: ExprId)

  private def toColumnReference(a: AttributeReference): ColumnReference = {
    ColumnReference(
      a.metadata.getLong(Dataset.DATASET_ID_KEY),
      a.metadata.getLong(Dataset.COL_POS_KEY).toInt,
      a.exprId)
  }

  object LogicalPlanWithDatasetId {
    def unapply(p: LogicalPlan): Option[(LogicalPlan, mutable.HashSet[Long])] = {
      p.getTagValue(Dataset.DATASET_ID_TAG).map(ids => p -> ids)
    }
  }

  object AttrWithCast {
    @scala.annotation.tailrec
    def unapply(expr: Expression): Option[AttributeReference] = expr match {
      case Cast(child, _, _, _) => unapply(child)
      case a: AttributeReference => Some(a)
      case _ => None
    }
  }

  override def apply(plan: LogicalPlan): LogicalPlan = {
    if (!conf.getConf(SQLConf.FAIL_AMBIGUOUS_SELF_JOIN_ENABLED)) return plan

    // We always remove the special metadata from `AttributeReference` at the end of this rule, so
    // Dataset column reference only exists in the root node via Dataset transformations like
    // `Dataset#select`.
    if (!plan.exists(_.isInstanceOf[Join])) return stripColumnReferenceMetadataInPlan(plan)

    val colRefAttrs = plan.expressions.flatMap(_.collect {
      case a: AttributeReference if isColumnReference(a) => a
    })

    if (colRefAttrs.nonEmpty) {
      val colRefs = colRefAttrs.map(toColumnReference).distinct
      val ambiguousColRefs = mutable.HashSet.empty[ColumnReference]
      val dsIdSet = colRefs.map(_.datasetId).toSet
      val inputAttrs = AttributeSet(plan.children.flatMap(_.output))

      plan.foreach {
        case LogicalPlanWithDatasetId(p, ids) if dsIdSet.intersect(ids).nonEmpty =>
          colRefs.foreach { ref =>
            if (ids.contains(ref.datasetId)) {
              if (ref.colPos < 0 || ref.colPos >= p.output.length) {
                throw new IllegalStateException("[BUG] Hit an invalid Dataset column reference: " +
                  s"$ref. Please open a JIRA ticket to report it.")
              } else {
                // When self-join happens, the analyzer asks the right side plan to generate
                // attributes with new exprIds. If a plan of a Dataset outputs an attribute which
                // is referred by a column reference, and this attribute has different exprId than
                // the attribute of column reference, then the column reference is ambiguous, as it
                // refers to a column that gets regenerated by self-join.
                val actualAttr = p.output(ref.colPos).asInstanceOf[AttributeReference]
                // We should only count ambiguous column references if the attribute is available as
                // the input attributes of the root node. For example:
                //   Join(b#1 = 3)
                //     TableScan(t, [a#0, b#1])
                //     Project(a#2)
                //       TableScan(t, [a#2, b#3])
                // This query is a self-join. The column 'b' in the join condition is not ambiguous,
                // as it can't come from the right side, which only has column 'a'.
                if (actualAttr.exprId != ref.exprId && inputAttrs.contains(actualAttr)) {
                  ambiguousColRefs += ref
                }
              }
            }
          }

        case _ =>
      }

      val ambiguousAttrs: Seq[AttributeReference] = plan match {
        case Join(
            LogicalPlanWithDatasetId(_, leftId),
            LogicalPlanWithDatasetId(_, rightId),
            _, condition, _) =>
          // If we are dealing with root join node, we need to take care of SPARK-6231:
          //  1. We can de-ambiguous `df("col") === df("col")` in the join condition.
          //  2. There is no ambiguity in direct self join like
          //     `df.join(df, df("col") === 1)`, because it doesn't matter which side the
          //     column comes from.
          def getAmbiguousAttrs(expr: Expression): Seq[AttributeReference] = expr match {
            case Equality(AttrWithCast(a), AttrWithCast(b)) if a.sameRef(b) =>
              Nil
            case Equality(AttrWithCast(a), b) if leftId == rightId && b.foldable =>
              Nil
            case Equality(a, AttrWithCast(b)) if leftId == rightId && a.foldable =>
              Nil
            case a: AttributeReference =>
              if (isColumnReference(a)) {
                val colRef = toColumnReference(a)
                if (ambiguousColRefs.contains(colRef)) Seq(a) else Nil
              } else {
                Nil
              }
            case _ => expr.children.flatMap(getAmbiguousAttrs)
          }
          condition.toSeq.flatMap(getAmbiguousAttrs)

        case _ => ambiguousColRefs.toSeq.map { ref =>
          colRefAttrs.find(attr => toColumnReference(attr) == ref).get
        }
      }

      if (ambiguousAttrs.nonEmpty) {
        throw QueryCompilationErrors.ambiguousAttributesInSelfJoinError(ambiguousAttrs)
      }
    }

    stripColumnReferenceMetadataInPlan(plan)
  }

  private def stripColumnReferenceMetadataInPlan(plan: LogicalPlan): LogicalPlan = {
    plan.transformExpressions {
      case a: AttributeReference if isColumnReference(a) =>
        // Remove the special metadata from this `AttributeReference`, as the detection is done.
        Column.stripColumnReferenceMetadata(a)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ArrayWrappers 源码

spark InMemoryStore 源码

spark KVIndex 源码

spark KVStore 源码

spark KVStoreIterator 源码

spark KVStoreSerializer 源码

spark KVStoreView 源码

spark KVTypeInfo 源码

spark LevelDB 源码

spark LevelDBIterator 源码

0  赞