spark JavaRankingMetricsExample 源码

  • 2022-10-20
  • 浏览 (258)

spark JavaRankingMetricsExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/mllib/JavaRankingMetricsExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.mllib;

// $example on$
import java.util.*;

import scala.Tuple2;

import org.apache.spark.api.java.*;
import org.apache.spark.mllib.evaluation.RegressionMetrics;
import org.apache.spark.mllib.evaluation.RankingMetrics;
import org.apache.spark.mllib.recommendation.ALS;
import org.apache.spark.mllib.recommendation.MatrixFactorizationModel;
import org.apache.spark.mllib.recommendation.Rating;
// $example off$
import org.apache.spark.SparkConf;

public class JavaRankingMetricsExample {
  public static void main(String[] args) {
    SparkConf conf = new SparkConf().setAppName("Java Ranking Metrics Example");
    JavaSparkContext sc = new JavaSparkContext(conf);
    // $example on$
    String path = "data/mllib/sample_movielens_data.txt";
    JavaRDD<String> data = sc.textFile(path);
    JavaRDD<Rating> ratings = data.map(line -> {
        String[] parts = line.split("::");
        return new Rating(Integer.parseInt(parts[0]), Integer.parseInt(parts[1]), Double
            .parseDouble(parts[2]) - 2.5);
      });
    ratings.cache();

    // Train an ALS model
    MatrixFactorizationModel model = ALS.train(JavaRDD.toRDD(ratings), 10, 10, 0.01);

    // Get top 10 recommendations for every user and scale ratings from 0 to 1
    JavaRDD<Tuple2<Object, Rating[]>> userRecs = model.recommendProductsForUsers(10).toJavaRDD();
    JavaRDD<Tuple2<Object, Rating[]>> userRecsScaled = userRecs.map(t -> {
        Rating[] scaledRatings = new Rating[t._2().length];
        for (int i = 0; i < scaledRatings.length; i++) {
          double newRating = Math.max(Math.min(t._2()[i].rating(), 1.0), 0.0);
          scaledRatings[i] = new Rating(t._2()[i].user(), t._2()[i].product(), newRating);
        }
        return new Tuple2<>(t._1(), scaledRatings);
      });
    JavaPairRDD<Object, Rating[]> userRecommended = JavaPairRDD.fromJavaRDD(userRecsScaled);

    // Map ratings to 1 or 0, 1 indicating a movie that should be recommended
    JavaRDD<Rating> binarizedRatings = ratings.map(r -> {
        double binaryRating;
        if (r.rating() > 0.0) {
          binaryRating = 1.0;
        } else {
          binaryRating = 0.0;
        }
        return new Rating(r.user(), r.product(), binaryRating);
      });

    // Group ratings by common user
    JavaPairRDD<Object, Iterable<Rating>> userMovies = binarizedRatings.groupBy(Rating::user);

    // Get true relevant documents from all user ratings
    JavaPairRDD<Object, List<Integer>> userMoviesList = userMovies.mapValues(docs -> {
        List<Integer> products = new ArrayList<>();
        for (Rating r : docs) {
          if (r.rating() > 0.0) {
            products.add(r.product());
          }
        }
        return products;
      });

    // Extract the product id from each recommendation
    JavaPairRDD<Object, List<Integer>> userRecommendedList = userRecommended.mapValues(docs -> {
        List<Integer> products = new ArrayList<>();
        for (Rating r : docs) {
          products.add(r.product());
        }
        return products;
      });
    JavaRDD<Tuple2<List<Integer>, List<Integer>>> relevantDocs = userMoviesList.join(
      userRecommendedList).values();

    // Instantiate the metrics object
    RankingMetrics<Integer> metrics = RankingMetrics.of(relevantDocs);

    // Precision, NDCG and Recall at k
    Integer[] kVector = {1, 3, 5};
    for (Integer k : kVector) {
      System.out.format("Precision at %d = %f\n", k, metrics.precisionAt(k));
      System.out.format("NDCG at %d = %f\n", k, metrics.ndcgAt(k));
      System.out.format("Recall at %d = %f\n", k, metrics.recallAt(k));
    }

    // Mean average precision
    System.out.format("Mean average precision = %f\n", metrics.meanAveragePrecision());

    //Mean average precision at k
    System.out.format("Mean average precision at 2 = %f\n", metrics.meanAveragePrecisionAt(2));

    // Evaluate the model using numerical ratings and regression metrics
    JavaRDD<Tuple2<Object, Object>> userProducts =
        ratings.map(r -> new Tuple2<>(r.user(), r.product()));

    JavaPairRDD<Tuple2<Integer, Integer>, Object> predictions = JavaPairRDD.fromJavaRDD(
      model.predict(JavaRDD.toRDD(userProducts)).toJavaRDD().map(r ->
        new Tuple2<>(new Tuple2<>(r.user(), r.product()), r.rating())));
    JavaRDD<Tuple2<Object, Object>> ratesAndPreds =
      JavaPairRDD.fromJavaRDD(ratings.map(r ->
        new Tuple2<Tuple2<Integer, Integer>, Object>(
          new Tuple2<>(r.user(), r.product()),
          r.rating())
      )).join(predictions).values();

    // Create regression metrics object
    RegressionMetrics regressionMetrics = new RegressionMetrics(ratesAndPreds.rdd());

    // Root mean squared error
    System.out.format("RMSE = %f\n", regressionMetrics.rootMeanSquaredError());

    // R-squared
    System.out.format("R-squared = %f\n", regressionMetrics.r2());
    // $example off$

    sc.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaALS 源码

spark JavaAssociationRulesExample 源码

spark JavaBinaryClassificationMetricsExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaCorrelationsExample 源码

spark JavaDecisionTreeClassificationExample 源码

spark JavaDecisionTreeRegressionExample 源码

spark JavaElementwiseProductExample 源码

spark JavaGaussianMixtureExample 源码

0  赞