hadoop Mapper 源码

  • 2022-10-20
  • 浏览 (139)

haddop Mapper 代码

文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapred/Mapper.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.mapred;

import java.io.IOException;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.io.Closeable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.compress.CompressionCodec;

/** 
 * Maps input key/value pairs to a set of intermediate key/value pairs.  
 * 
 * <p>Maps are the individual tasks which transform input records into a 
 * intermediate records. The transformed intermediate records need not be of 
 * the same type as the input records. A given input pair may map to zero or 
 * many output pairs.</p> 
 * 
 * <p>The Hadoop Map-Reduce framework spawns one map task for each 
 * {@link InputSplit} generated by the {@link InputFormat} for the job.
 * <code>Mapper</code> implementations can access the {@link JobConf} for the 
 * job via the {@link JobConfigurable#configure(JobConf)} and initialize
 * themselves. Similarly they can use the {@link Closeable#close()} method for
 * de-initialization.</p>
 * 
 * <p>The framework then calls 
 * {@link #map(Object, Object, OutputCollector, Reporter)} 
 * for each key/value pair in the <code>InputSplit</code> for that task.</p>
 * 
 * <p>All intermediate values associated with a given output key are 
 * subsequently grouped by the framework, and passed to a {@link Reducer} to  
 * determine the final output. Users can control the grouping by specifying
 * a <code>Comparator</code> via 
 * {@link JobConf#setOutputKeyComparatorClass(Class)}.</p>
 *
 * <p>The grouped <code>Mapper</code> outputs are partitioned per 
 * <code>Reducer</code>. Users can control which keys (and hence records) go to 
 * which <code>Reducer</code> by implementing a custom {@link Partitioner}.
 * 
 * <p>Users can optionally specify a <code>combiner</code>, via 
 * {@link JobConf#setCombinerClass(Class)}, to perform local aggregation of the 
 * intermediate outputs, which helps to cut down the amount of data transferred 
 * from the <code>Mapper</code> to the <code>Reducer</code>.
 * 
 * <p>The intermediate, grouped outputs are always stored in 
 * {@link SequenceFile}s. Applications can specify if and how the intermediate
 * outputs are to be compressed and which {@link CompressionCodec}s are to be
 * used via the <code>JobConf</code>.</p>
 *  
 * <p>If the job has 
 * <a href="{@docRoot}/org/apache/hadoop/mapred/JobConf.html#ReducerNone">zero
 * reduces</a> then the output of the <code>Mapper</code> is directly written
 * to the {@link FileSystem} without grouping by keys.</p>
 * 
 * <p>Example:</p>
 * <p><blockquote><pre>
 *     public class MyMapper&lt;K extends WritableComparable, V extends Writable&gt; 
 *     extends MapReduceBase implements Mapper&lt;K, V, K, V&gt; {
 *     
 *       static enum MyCounters { NUM_RECORDS }
 *       
 *       private String mapTaskId;
 *       private String inputFile;
 *       private int noRecords = 0;
 *       
 *       public void configure(JobConf job) {
 *         mapTaskId = job.get(JobContext.TASK_ATTEMPT_ID);
 *         inputFile = job.get(JobContext.MAP_INPUT_FILE);
 *       }
 *       
 *       public void map(K key, V val,
 *                       OutputCollector&lt;K, V&gt; output, Reporter reporter)
 *       throws IOException {
 *         // Process the &lt;key, value&gt; pair (assume this takes a while)
 *         // ...
 *         // ...
 *         
 *         // Let the framework know that we are alive, and kicking!
 *         // reporter.progress();
 *         
 *         // Process some more
 *         // ...
 *         // ...
 *         
 *         // Increment the no. of &lt;key, value&gt; pairs processed
 *         ++noRecords;
 *
 *         // Increment counters
 *         reporter.incrCounter(NUM_RECORDS, 1);
 *        
 *         // Every 100 records update application-level status
 *         if ((noRecords%100) == 0) {
 *           reporter.setStatus(mapTaskId + " processed " + noRecords + 
 *                              " from input-file: " + inputFile); 
 *         }
 *         
 *         // Output the result
 *         output.collect(key, val);
 *       }
 *     }
 * </pre></blockquote>
 *
 * <p>Applications may write a custom {@link MapRunnable} to exert greater
 * control on map processing e.g. multi-threaded <code>Mapper</code>s etc.</p>
 * 
 * @see JobConf
 * @see InputFormat
 * @see Partitioner  
 * @see Reducer
 * @see MapReduceBase
 * @see MapRunnable
 * @see SequenceFile
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Mapper<K1, V1, K2, V2> extends JobConfigurable, Closeable {
  
  /** 
   * Maps a single input key/value pair into an intermediate key/value pair.
   * 
   * <p>Output pairs need not be of the same types as input pairs.  A given 
   * input pair may map to zero or many output pairs.  Output pairs are 
   * collected with calls to 
   * {@link OutputCollector#collect(Object,Object)}.</p>
   *
   * <p>Applications can use the {@link Reporter} provided to report progress 
   * or just indicate that they are alive. In scenarios where the application 
   * takes significant amount of time to process individual key/value
   * pairs, this is crucial since the framework might assume that the task has 
   * timed-out and kill that task. The other way of avoiding this is to set 
   * <a href="{@docRoot}/../hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml#mapreduce.task.timeout">
   * mapreduce.task.timeout</a> to a high-enough value (or even zero for no 
   * time-outs).</p>
   * 
   * @param key the input key.
   * @param value the input value.
   * @param output collects mapped keys and values.
   * @param reporter facility to report progress.
   */
  void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)
  throws IOException;
}

相关信息

hadoop 源码目录

相关文章

hadoop AMFeedback 源码

hadoop BackupStore 源码

hadoop BasicTypeSorterBase 源码

hadoop BufferSorter 源码

hadoop CleanupQueue 源码

hadoop Clock 源码

hadoop ClusterStatus 源码

hadoop Counters 源码

hadoop CumulativePeriodicStats 源码

hadoop DeprecatedQueueConfigurationParser 源码

0  赞