spark BinaryClassificationMetricComputers 源码
spark BinaryClassificationMetricComputers 代码
文件路径:/mllib/src/main/scala/org/apache/spark/mllib/evaluation/binary/BinaryClassificationMetricComputers.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.mllib.evaluation.binary
/**
* Trait for a binary classification evaluation metric computer.
*/
private[evaluation] trait BinaryClassificationMetricComputer extends Serializable {
def apply(c: BinaryConfusionMatrix): Double
}
/** Precision. Defined as 1.0 when there are no positive examples. */
private[evaluation] object Precision extends BinaryClassificationMetricComputer {
override def apply(c: BinaryConfusionMatrix): Double = {
val totalPositives = c.weightedTruePositives + c.weightedFalsePositives
if (totalPositives == 0.0) {
1.0
} else {
c.weightedTruePositives / totalPositives
}
}
}
/** False positive rate. Defined as 0.0 when there are no negative examples. */
private[evaluation] object FalsePositiveRate extends BinaryClassificationMetricComputer {
override def apply(c: BinaryConfusionMatrix): Double = {
if (c.weightedNegatives == 0.0) {
0.0
} else {
c.weightedFalsePositives / c.weightedNegatives
}
}
}
/** Recall. Defined as 0.0 when there are no positive examples. */
private[evaluation] object Recall extends BinaryClassificationMetricComputer {
override def apply(c: BinaryConfusionMatrix): Double = {
if (c.weightedPositives == 0.0) {
0.0
} else {
c.weightedTruePositives / c.weightedPositives
}
}
}
/**
* F-Measure. Defined as 0 if both precision and recall are 0. EG in the case that all examples
* are false positives.
* @param beta the beta constant in F-Measure
* @see <a href="http://en.wikipedia.org/wiki/F1_score">F1 score (Wikipedia)</a>
*/
private[evaluation] case class FMeasure(beta: Double) extends BinaryClassificationMetricComputer {
private val beta2 = beta * beta
override def apply(c: BinaryConfusionMatrix): Double = {
val precision = Precision(c)
val recall = Recall(c)
if (precision + recall == 0) {
0.0
} else {
(1.0 + beta2) * (precision * recall) / (beta2 * precision + recall)
}
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony