spark KubernetesClusterSchedulerBackend 源码

  • 2022-10-20
  • 浏览 (213)

spark KubernetesClusterSchedulerBackend 代码

文件路径:/resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterSchedulerBackend.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.scheduler.cluster.k8s

import java.util.concurrent.{ScheduledExecutorService, TimeUnit}
import java.util.concurrent.atomic.AtomicInteger

import scala.concurrent.Future

import io.fabric8.kubernetes.api.model.Pod
import io.fabric8.kubernetes.api.model.PodBuilder
import io.fabric8.kubernetes.client.KubernetesClient

import org.apache.spark.SparkContext
import org.apache.spark.deploy.k8s.{KubernetesConf, KubernetesUtils}
import org.apache.spark.deploy.k8s.Config._
import org.apache.spark.deploy.k8s.Constants._
import org.apache.spark.deploy.k8s.submit.KubernetesClientUtils
import org.apache.spark.deploy.security.HadoopDelegationTokenManager
import org.apache.spark.internal.config.SCHEDULER_MIN_REGISTERED_RESOURCES_RATIO
import org.apache.spark.resource.ResourceProfile
import org.apache.spark.rpc.{RpcAddress, RpcCallContext}
import org.apache.spark.scheduler.{ExecutorDecommissionInfo, ExecutorKilled, ExecutorLossReason,
  TaskSchedulerImpl}
import org.apache.spark.scheduler.cluster.{CoarseGrainedSchedulerBackend, SchedulerBackendUtils}
import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages.RegisterExecutor
import org.apache.spark.util.{ThreadUtils, Utils}

private[spark] class KubernetesClusterSchedulerBackend(
    scheduler: TaskSchedulerImpl,
    sc: SparkContext,
    kubernetesClient: KubernetesClient,
    executorService: ScheduledExecutorService,
    snapshotsStore: ExecutorPodsSnapshotsStore,
    podAllocator: AbstractPodsAllocator,
    lifecycleEventHandler: ExecutorPodsLifecycleManager,
    watchEvents: ExecutorPodsWatchSnapshotSource,
    pollEvents: ExecutorPodsPollingSnapshotSource)
    extends CoarseGrainedSchedulerBackend(scheduler, sc.env.rpcEnv) {
  private val appId = KubernetesConf.getKubernetesAppId()

  protected override val minRegisteredRatio =
    if (conf.get(SCHEDULER_MIN_REGISTERED_RESOURCES_RATIO).isEmpty) {
      0.8
    } else {
      super.minRegisteredRatio
    }

  private val initialExecutors = SchedulerBackendUtils.getInitialTargetExecutorNumber(conf)

  private val shouldDeleteDriverService = conf.get(KUBERNETES_DRIVER_SERVICE_DELETE_ON_TERMINATION)

  private val shouldDeleteExecutors = conf.get(KUBERNETES_DELETE_EXECUTORS)

  private val defaultProfile = scheduler.sc.resourceProfileManager.defaultResourceProfile

  private val namespace = conf.get(KUBERNETES_NAMESPACE)

  // Allow removeExecutor to be accessible by ExecutorPodsLifecycleEventHandler
  private[k8s] def doRemoveExecutor(executorId: String, reason: ExecutorLossReason): Unit = {
    removeExecutor(executorId, reason)
  }

  private def setUpExecutorConfigMap(driverPod: Option[Pod]): Unit = {
    val configMapName = KubernetesClientUtils.configMapNameExecutor
    val resolvedExecutorProperties =
      Map(KUBERNETES_NAMESPACE.key -> namespace)
    val confFilesMap = KubernetesClientUtils
      .buildSparkConfDirFilesMap(configMapName, conf, resolvedExecutorProperties) ++
      resolvedExecutorProperties
    val labels =
      Map(SPARK_APP_ID_LABEL -> applicationId(), SPARK_ROLE_LABEL -> SPARK_POD_EXECUTOR_ROLE)
    val configMap = KubernetesClientUtils.buildConfigMap(configMapName, confFilesMap, labels)
    KubernetesUtils.addOwnerReference(driverPod.orNull, Seq(configMap))
    kubernetesClient.configMaps().inNamespace(namespace).resource(configMap).create()
  }

  /**
   * Get an application ID associated with the job.
   * This returns the string value of spark.app.id if set, otherwise
   * the locally-generated ID.
   *
   * @return The application ID
   */
  override def applicationId(): String = {
    conf.getOption("spark.app.id").getOrElse(appId)
  }

  override def start(): Unit = {
    super.start()
    // Must be called before setting the executors
    podAllocator.start(applicationId(), this)
    val initExecs = Map(defaultProfile -> initialExecutors)
    podAllocator.setTotalExpectedExecutors(initExecs)
    lifecycleEventHandler.start(this)
    watchEvents.start(applicationId())
    pollEvents.start(applicationId())
    if (!conf.get(KUBERNETES_EXECUTOR_DISABLE_CONFIGMAP)) {
      setUpExecutorConfigMap(podAllocator.driverPod)
    }
  }

  override def stop(): Unit = {
    // When `CoarseGrainedSchedulerBackend.stop` throws `SparkException`,
    // K8s cluster scheduler should log and proceed in order to delete the K8s cluster resources.
    Utils.tryLogNonFatalError {
      super.stop()
    }

    Utils.tryLogNonFatalError {
      snapshotsStore.stop()
    }

    Utils.tryLogNonFatalError {
      watchEvents.stop()
    }

    Utils.tryLogNonFatalError {
      pollEvents.stop()
    }

    if (shouldDeleteDriverService) {
      Utils.tryLogNonFatalError {
        kubernetesClient
          .services()
          .inNamespace(namespace)
          .withLabel(SPARK_APP_ID_LABEL, applicationId())
          .delete()
      }
    }

    if (conf.get(KUBERNETES_DRIVER_OWN_PVC)) {
      Utils.tryLogNonFatalError {
        kubernetesClient
          .persistentVolumeClaims()
          .inNamespace(namespace)
          .withLabel(SPARK_APP_ID_LABEL, applicationId())
          .delete()
      }
    }

    if (shouldDeleteExecutors) {

      podAllocator.stop(applicationId())

      if (!conf.get(KUBERNETES_EXECUTOR_DISABLE_CONFIGMAP)) {
        Utils.tryLogNonFatalError {
          kubernetesClient
            .configMaps()
            .inNamespace(namespace)
            .withLabel(SPARK_APP_ID_LABEL, applicationId())
            .withLabel(SPARK_ROLE_LABEL, SPARK_POD_EXECUTOR_ROLE)
            .delete()
        }
      }
    }

    Utils.tryLogNonFatalError {
      ThreadUtils.shutdown(executorService)
    }

    Utils.tryLogNonFatalError {
      kubernetesClient.close()
    }
  }

  override def doRequestTotalExecutors(
      resourceProfileToTotalExecs: Map[ResourceProfile, Int]): Future[Boolean] = {
    podAllocator.setTotalExpectedExecutors(resourceProfileToTotalExecs)
    Future.successful(true)
  }

  override def sufficientResourcesRegistered(): Boolean = {
    totalRegisteredExecutors.get() >= initialExecutors * minRegisteredRatio
  }

  override def getExecutorIds(): Seq[String] = synchronized {
    super.getExecutorIds()
  }

  private def labelDecommissioningExecs(execIds: Seq[String]) = {
    // Only kick off the labeling task if we have a label.
    conf.get(KUBERNETES_EXECUTOR_DECOMMISSION_LABEL).foreach { label =>
      val labelTask = new Runnable() {
        override def run(): Unit = Utils.tryLogNonFatalError {
          kubernetesClient.pods()
            .inNamespace(namespace)
            .withLabel(SPARK_APP_ID_LABEL, applicationId())
            .withLabel(SPARK_ROLE_LABEL, SPARK_POD_EXECUTOR_ROLE)
            .withLabelIn(SPARK_EXECUTOR_ID_LABEL, execIds: _*)
            .resources()
            .forEach { podResource =>
              podResource.edit({ p: Pod =>
                new PodBuilder(p).editOrNewMetadata()
                  .addToLabels(label,
                    conf.get(KUBERNETES_EXECUTOR_DECOMMISSION_LABEL_VALUE).getOrElse(""))
                  .endMetadata()
                  .build()})
          }
        }
      }
      executorService.execute(labelTask)
    }
  }

  override def decommissionExecutors(
      executorsAndDecomInfo: Array[(String, ExecutorDecommissionInfo)],
      adjustTargetNumExecutors: Boolean,
      triggeredByExecutor: Boolean): Seq[String] = {
    // If decommissioning is triggered by the executor the K8s cluster manager has already
    // picked the pod to evict so we don't need to update the labels.
    if (!triggeredByExecutor) {
      labelDecommissioningExecs(executorsAndDecomInfo.map(_._1))
    }
    super.decommissionExecutors(executorsAndDecomInfo, adjustTargetNumExecutors,
      triggeredByExecutor)
  }

  override def doKillExecutors(executorIds: Seq[String]): Future[Boolean] = {
    // If we've decided to remove some executors we should tell Kubernetes that we don't care.
    labelDecommissioningExecs(executorIds)

    // Tell the executors to exit themselves.
    executorIds.foreach { id =>
      removeExecutor(id, ExecutorKilled)
    }

    // Give some time for the executors to shut themselves down, then forcefully kill any
    // remaining ones. This intentionally ignores the configuration about whether pods
    // should be deleted; only executors that shut down gracefully (and are then collected
    // by the ExecutorPodsLifecycleManager) will respect that configuration.
    val killTask = new Runnable() {
      override def run(): Unit = Utils.tryLogNonFatalError {
        val running = kubernetesClient
          .pods()
          .inNamespace(namespace)
          .withField("status.phase", "Running")
          .withLabel(SPARK_APP_ID_LABEL, applicationId())
          .withLabel(SPARK_ROLE_LABEL, SPARK_POD_EXECUTOR_ROLE)
          .withLabelIn(SPARK_EXECUTOR_ID_LABEL, executorIds: _*)

        if (!running.list().getItems().isEmpty()) {
          logInfo(s"Forcefully deleting ${running.list().getItems().size()} pods " +
            s"(out of ${executorIds.size}) that are still running after graceful shutdown period.")
          running.delete()
        }
      }
    }
    executorService.schedule(killTask, conf.get(KUBERNETES_DYN_ALLOC_KILL_GRACE_PERIOD),
      TimeUnit.MILLISECONDS)

    // Return an immediate success, since we can't confirm or deny that executors have been
    // actually shut down without waiting too long and blocking the allocation thread, which
    // waits on this future to complete, blocking further allocations / deallocations.
    //
    // This relies a lot on the guarantees of Spark's RPC system, that a message will be
    // delivered to the destination unless there's an issue with the connection, in which
    // case the executor will shut itself down (and the driver, separately, will just declare
    // it as "lost"). Coupled with the allocation manager keeping track of which executors are
    // pending release, returning "true" here means that eventually all the requested executors
    // will be removed.
    //
    // The cleanup timer above is just an optimization to make sure that stuck executors don't
    // stick around in the k8s server. Normally it should never delete any pods at all.
    Future.successful(true)
  }

  override def createDriverEndpoint(): DriverEndpoint = {
    new KubernetesDriverEndpoint()
  }

  val execId = new AtomicInteger(0)

  override protected def createTokenManager(): Option[HadoopDelegationTokenManager] = {
    Some(new HadoopDelegationTokenManager(conf, sc.hadoopConfiguration, driverEndpoint))
  }

  override protected def isExecutorExcluded(executorId: String, hostname: String): Boolean = {
    podAllocator.isDeleted(executorId)
  }

  private class KubernetesDriverEndpoint extends DriverEndpoint {
    private def generateExecID(context: RpcCallContext): PartialFunction[Any, Unit] = {
      case x: GenerateExecID =>
        val newId = execId.incrementAndGet().toString
        context.reply(newId)
        // Generally this should complete quickly but safer to not block in-case we're in the
        // middle of an etcd fail over or otherwise slower writes.
        val labelTask = new Runnable() {
          override def run(): Unit = Utils.tryLogNonFatalError {
            // Label the pod with it's exec ID
            kubernetesClient.pods()
              .inNamespace(namespace)
              .withName(x.podName)
              .edit({p: Pod => new PodBuilder(p).editMetadata()
                .addToLabels(SPARK_EXECUTOR_ID_LABEL, newId)
                .endMetadata()
                .build()})
          }
        }
        executorService.execute(labelTask)
    }
    private def ignoreRegisterExecutorAtStoppedContext: PartialFunction[Any, Unit] = {
      case _: RegisterExecutor if sc.isStopped => // No-op
    }

    override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] =
      generateExecID(context).orElse(
        ignoreRegisterExecutorAtStoppedContext.orElse(
          super.receiveAndReply(context)))

    override def onDisconnected(rpcAddress: RpcAddress): Unit = {
      // Don't do anything besides disabling the executor - allow the Kubernetes API events to
      // drive the rest of the lifecycle decisions
      // TODO what if we disconnect from a networking issue? Probably want to mark the executor
      // to be deleted eventually.
      addressToExecutorId.get(rpcAddress).foreach(disableExecutor)
    }
  }

}

相关信息

spark 源码目录

相关文章

spark AbstractPodsAllocator 源码

spark ExecutorPodStates 源码

spark ExecutorPodsAllocator 源码

spark ExecutorPodsLifecycleManager 源码

spark ExecutorPodsPollingSnapshotSource 源码

spark ExecutorPodsSnapshot 源码

spark ExecutorPodsSnapshotsStore 源码

spark ExecutorPodsSnapshotsStoreImpl 源码

spark ExecutorPodsWatchSnapshotSource 源码

spark ExecutorRollPlugin 源码

0  赞