hadoop NLineInputFormat 源码
haddop NLineInputFormat 代码
文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/lib/input/NLineInputFormat.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapreduce.lib.input;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FutureDataInputStreamBuilder;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.MRJobConfig;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.util.LineReader;
import org.apache.hadoop.util.functional.FutureIO;
/**
* NLineInputFormat which splits N lines of input as one split.
*
* In many "pleasantly" parallel applications, each process/mapper
* processes the same input file (s), but with computations are
* controlled by different parameters.(Referred to as "parameter sweeps").
* One way to achieve this, is to specify a set of parameters
* (one set per line) as input in a control file
* (which is the input path to the map-reduce application,
* where as the input dataset is specified
* via a config variable in JobConf.).
*
* The NLineInputFormat can be used in such applications, that splits
* the input file such that by default, one line is fed as
* a value to one map task, and key is the offset.
* i.e. (k,v) is (LongWritable, Text).
* The location hints will span the whole mapred cluster.
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public class NLineInputFormat extends FileInputFormat<LongWritable, Text> {
public static final String LINES_PER_MAP =
"mapreduce.input.lineinputformat.linespermap";
public RecordReader<LongWritable, Text> createRecordReader(
InputSplit genericSplit, TaskAttemptContext context)
throws IOException {
context.setStatus(genericSplit.toString());
return new LineRecordReader();
}
/**
* Logically splits the set of input files for the job, splits N lines
* of the input as one split.
*
* @see FileInputFormat#getSplits(JobContext)
*/
public List<InputSplit> getSplits(JobContext job)
throws IOException {
List<InputSplit> splits = new ArrayList<InputSplit>();
int numLinesPerSplit = getNumLinesPerSplit(job);
for (FileStatus status : listStatus(job)) {
splits.addAll(getSplitsForFile(status,
job.getConfiguration(), numLinesPerSplit));
}
return splits;
}
public static List<FileSplit> getSplitsForFile(FileStatus status,
Configuration conf, int numLinesPerSplit) throws IOException {
List<FileSplit> splits = new ArrayList<FileSplit> ();
Path fileName = status.getPath();
if (status.isDirectory()) {
throw new IOException("Not a file: " + fileName);
}
LineReader lr = null;
try {
final FutureDataInputStreamBuilder builder =
fileName.getFileSystem(conf).openFile(fileName);
FutureIO.propagateOptions(builder, conf,
MRJobConfig.INPUT_FILE_OPTION_PREFIX,
MRJobConfig.INPUT_FILE_MANDATORY_PREFIX);
FSDataInputStream in = FutureIO.awaitFuture(builder.build());
lr = new LineReader(in, conf);
Text line = new Text();
int numLines = 0;
long begin = 0;
long length = 0;
int num = -1;
while ((num = lr.readLine(line)) > 0) {
numLines++;
length += num;
if (numLines == numLinesPerSplit) {
splits.add(createFileSplit(fileName, begin, length));
begin += length;
length = 0;
numLines = 0;
}
}
if (numLines != 0) {
splits.add(createFileSplit(fileName, begin, length));
}
} finally {
if (lr != null) {
lr.close();
}
}
return splits;
}
/**
* NLineInputFormat uses LineRecordReader, which always reads
* (and consumes) at least one character out of its upper split
* boundary. So to make sure that each mapper gets N lines, we
* move back the upper split limits of each split
* by one character here.
* @param fileName Path of file
* @param begin the position of the first byte in the file to process
* @param length number of bytes in InputSplit
* @return FileSplit
*/
protected static FileSplit createFileSplit(Path fileName, long begin, long length) {
return (begin == 0)
? new FileSplit(fileName, begin, length - 1, new String[] {})
: new FileSplit(fileName, begin - 1, length, new String[] {});
}
/**
* Set the number of lines per split
* @param job the job to modify
* @param numLines the number of lines per split
*/
public static void setNumLinesPerSplit(Job job, int numLines) {
job.getConfiguration().setInt(LINES_PER_MAP, numLines);
}
/**
* Get the number of lines per split
* @param job the job
* @return the number of lines per split
*/
public static int getNumLinesPerSplit(JobContext job) {
return job.getConfiguration().getInt(LINES_PER_MAP, 1);
}
}
相关信息
相关文章
hadoop CombineFileInputFormat 源码
hadoop CombineFileRecordReader 源码
hadoop CombineFileRecordReaderWrapper 源码
hadoop CombineSequenceFileInputFormat 源码
hadoop CombineTextInputFormat 源码
hadoop CompressedSplitLineReader 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦