spark Observation 源码

  • 2022-10-20
  • 浏览 (248)

spark Observation 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/Observation.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql

import java.util.UUID

import scala.collection.JavaConverters

import org.apache.spark.sql.execution.QueryExecution
import org.apache.spark.sql.util.QueryExecutionListener


/**
 * Helper class to simplify usage of `Dataset.observe(String, Column, Column*)`:
 *
 * {{{
 *   // Observe row count (rows) and highest id (maxid) in the Dataset while writing it
 *   val observation = Observation("my metrics")
 *   val observed_ds = ds.observe(observation, count(lit(1)).as("rows"), max($"id").as("maxid"))
 *   observed_ds.write.parquet("ds.parquet")
 *   val metrics = observation.get
 * }}}
 *
 * This collects the metrics while the first action is executed on the observed dataset. Subsequent
 * actions do not modify the metrics returned by [[get]]. Retrieval of the metric via [[get]]
 * blocks until the first action has finished and metrics become available.
 *
 * This class does not support streaming datasets.
 *
 * @param name name of the metric
 * @since 3.3.0
 */
class Observation(name: String) {

  if (name.isEmpty) throw new IllegalArgumentException("Name must not be empty")

  /**
   * Create an Observation instance without providing a name. This generates a random name.
   */
  def this() = this(UUID.randomUUID().toString)

  private val listener: ObservationListener = ObservationListener(this)

  @volatile private var sparkSession: Option[SparkSession] = None

  @volatile private var metrics: Option[Map[String, Any]] = None

  /**
   * Attach this observation to the given [[Dataset]] to observe aggregation expressions.
   *
   * @param ds dataset
   * @param expr first aggregation expression
   * @param exprs more aggregation expressions
   * @tparam T dataset type
   * @return observed dataset
   * @throws IllegalArgumentException If this is a streaming Dataset (ds.isStreaming == true)
   */
  private[spark] def on[T](ds: Dataset[T], expr: Column, exprs: Column*): Dataset[T] = {
    if (ds.isStreaming) {
      throw new IllegalArgumentException("Observation does not support streaming Datasets")
    }
    register(ds.sparkSession)
    ds.observe(name, expr, exprs: _*)
  }

  /**
   * (Scala-specific) Get the observed metrics. This waits for the observed dataset to finish
   * its first action. Only the result of the first action is available. Subsequent actions do not
   * modify the result.
   *
   * @return the observed metrics as a `Map[String, Any]`
   * @throws InterruptedException interrupted while waiting
   */
  @throws[InterruptedException]
  def get: Map[String, _] = {
    synchronized {
      // we need to loop as wait might return without us calling notify
      // https://en.wikipedia.org/w/index.php?title=Spurious_wakeup&oldid=992601610
      while (this.metrics.isEmpty) {
        wait()
      }
    }

    this.metrics.get
  }

  /**
   * (Java-specific) Get the observed metrics. This waits for the observed dataset to finish
   * its first action. Only the result of the first action is available. Subsequent actions do not
   * modify the result.
   *
   * @return the observed metrics as a `java.util.Map[String, Object]`
   * @throws InterruptedException interrupted while waiting
   */
  @throws[InterruptedException]
  def getAsJava: java.util.Map[String, AnyRef] = {
    JavaConverters.mapAsJavaMap(
      get.map { case (key, value) => (key, value.asInstanceOf[Object])}
    )
  }

  private def register(sparkSession: SparkSession): Unit = {
    // makes this class thread-safe:
    // only the first thread entering this block can set sparkSession
    // all other threads will see the exception, as it is only allowed to do this once
    synchronized {
      if (this.sparkSession.isDefined) {
        throw new IllegalArgumentException("An Observation can be used with a Dataset only once")
      }
      this.sparkSession = Some(sparkSession)
    }

    sparkSession.listenerManager.register(this.listener)
  }

  private def unregister(): Unit = {
    this.sparkSession.foreach(_.listenerManager.unregister(this.listener))
  }

  private[spark] def onFinish(qe: QueryExecution): Unit = {
    synchronized {
      if (this.metrics.isEmpty) {
        val row = qe.observedMetrics.get(name)
        this.metrics = row.map(r => r.getValuesMap[Any](r.schema.fieldNames))
        if (metrics.isDefined) {
          notifyAll()
          unregister()
        }
      }
    }
  }

}

private[sql] case class ObservationListener(observation: Observation)
  extends QueryExecutionListener {

  override def onSuccess(funcName: String, qe: QueryExecution, durationNs: Long): Unit =
    observation.onFinish(qe)

  override def onFailure(funcName: String, qe: QueryExecution, exception: Exception): Unit =
    observation.onFinish(qe)

}

/**
 * (Scala-specific) Create instances of Observation via Scala `apply`.
 * @since 3.3.0
 */
object Observation {

  /**
   * Observation constructor for creating an anonymous observation.
   */
  def apply(): Observation = new Observation()

  /**
   * Observation constructor for creating a named observation.
   */
  def apply(name: String): Observation = new Observation(name)

}

相关信息

spark 源码目录

相关文章

spark Column 源码

spark DataFrameNaFunctions 源码

spark DataFrameReader 源码

spark DataFrameStatFunctions 源码

spark DataFrameWriter 源码

spark DataFrameWriterV2 源码

spark Dataset 源码

spark DatasetHolder 源码

spark ExperimentalMethods 源码

spark ForeachWriter 源码

0  赞