hadoop EventWriter 源码

  • 2022-10-20
  • 浏览 (181)

haddop EventWriter 代码

文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/jobhistory/EventWriter.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.mapreduce.jobhistory;

import java.io.IOException;
import java.util.ArrayList;

import org.apache.avro.Schema;
import org.apache.avro.io.DatumWriter;
import org.apache.avro.io.Encoder;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.avro.util.Utf8;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.CounterGroup;
import org.apache.hadoop.mapreduce.Counters;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.apache.hadoop.classification.VisibleForTesting;

/**
 * Event Writer is an utility class used to write events to the underlying
 * stream. Typically, one event writer (which translates to one stream) 
 * is created per job 
 * 
 */
@InterfaceAudience.Private
@InterfaceStability.Unstable
public class EventWriter {
  static final String VERSION = "Avro-Json";
  static final String VERSION_BINARY = "Avro-Binary";

  private FSDataOutputStream out;
  private DatumWriter<Event> writer =
    new SpecificDatumWriter<Event>(Event.class);
  private Encoder encoder;
  private static final Logger LOG = LoggerFactory.getLogger(EventWriter.class);

  /**
   * avro encoding format supported by EventWriter.
   */
  public enum WriteMode { JSON, BINARY }
  private final WriteMode writeMode;
  private final boolean jsonOutput;  // Cache value while we have 2 modes

  @VisibleForTesting
  public EventWriter(FSDataOutputStream out, WriteMode mode)
      throws IOException {
    this.out = out;
    this.writeMode = mode;
    if (this.writeMode==WriteMode.JSON) {
      this.jsonOutput = true;
      out.writeBytes(VERSION);
    } else if (this.writeMode==WriteMode.BINARY) {
      this.jsonOutput = false;
      out.writeBytes(VERSION_BINARY);
    } else {
      throw new IOException("Unknown mode: " + mode);
    }
    out.writeBytes("\n");
    out.writeBytes(Event.SCHEMA$.toString());
    out.writeBytes("\n");
    if (!this.jsonOutput) {
      this.encoder = EncoderFactory.get().binaryEncoder(out, null);
    } else {
      this.encoder = EncoderFactory.get().jsonEncoder(Event.SCHEMA$, out);
    }
  }
  
  synchronized void write(HistoryEvent event) throws IOException { 
    Event wrapper = new Event();
    wrapper.setType(event.getEventType());
    wrapper.setEvent(event.getDatum());
    writer.write(wrapper, encoder);
    if (this.jsonOutput) {
      encoder.flush();
      out.writeBytes("\n");
    }
  }
  
  void flush() throws IOException {
    encoder.flush();
    out.flush();
    out.hflush();
  }

  @VisibleForTesting
  public void close() throws IOException {
    try {
      encoder.flush();
      out.close();
      out = null;
    } finally {
      IOUtils.cleanupWithLogger(LOG, out);
    }
  }

  private static final Schema GROUPS =
    Schema.createArray(JhCounterGroup.SCHEMA$);

  private static final Schema COUNTERS =
    Schema.createArray(JhCounter.SCHEMA$);

  static JhCounters toAvro(Counters counters) {
    return toAvro(counters, "COUNTERS");
  }
  static JhCounters toAvro(Counters counters, String name) {
    JhCounters result = new JhCounters();
    result.setName(new Utf8(name));
    result.setGroups(new ArrayList<JhCounterGroup>(0));
    if (counters == null) return result;
    for (CounterGroup group : counters) {
      JhCounterGroup g = new JhCounterGroup();
      g.setName(new Utf8(group.getName()));
      g.setDisplayName(new Utf8(group.getDisplayName()));
      g.setCounts(new ArrayList<JhCounter>(group.size()));
      for (Counter counter : group) {
        JhCounter c = new JhCounter();
        c.setName(new Utf8(counter.getName()));
        c.setDisplayName(new Utf8(counter.getDisplayName()));
        c.setValue(counter.getValue());
        g.getCounts().add(c);
      }
      result.getGroups().add(g);
    }
    return result;
  }

}

相关信息

hadoop 源码目录

相关文章

hadoop AMStartedEvent 源码

hadoop AvroArrayUtils 源码

hadoop EventReader 源码

hadoop HistoryEvent 源码

hadoop HistoryEventHandler 源码

hadoop HistoryViewer 源码

hadoop HistoryViewerPrinter 源码

hadoop HumanReadableHistoryViewerPrinter 源码

hadoop JSONHistoryViewerPrinter 源码

hadoop JobFinishedEvent 源码

0  赞