spark MultivariateSummarizer 源码

  • 2022-10-20
  • 浏览 (206)

spark MultivariateSummarizer 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/MultivariateSummarizer.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import scopt.OptionParser

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.stat.MultivariateOnlineSummarizer
import org.apache.spark.mllib.util.MLUtils

/**
 * An example app for summarizing multivariate data from a file. Run with
 * {{{
 * bin/run-example org.apache.spark.examples.mllib.MultivariateSummarizer
 * }}}
 * By default, this loads a synthetic dataset from `data/mllib/sample_linear_regression_data.txt`.
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object MultivariateSummarizer {

  case class Params(input: String = "data/mllib/sample_linear_regression_data.txt")
    extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {

    val defaultParams = Params()

    val parser = new OptionParser[Params]("MultivariateSummarizer") {
      head("MultivariateSummarizer: an example app for MultivariateOnlineSummarizer")
      opt[String]("input")
        .text(s"Input path to labeled examples in LIBSVM format, default: ${defaultParams.input}")
        .action((x, c) => c.copy(input = x))
      note(
        """
        |For example, the following command runs this app on a synthetic dataset:
        |
        | bin/spark-submit --class org.apache.spark.examples.mllib.MultivariateSummarizer \
        |  examples/target/scala-*/spark-examples-*.jar \
        |  --input data/mllib/sample_linear_regression_data.txt
        """.stripMargin)
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  def run(params: Params): Unit = {
    val conf = new SparkConf().setAppName(s"MultivariateSummarizer with $params")
    val sc = new SparkContext(conf)

    val examples = MLUtils.loadLibSVMFile(sc, params.input).cache()

    println(s"Summary of data file: ${params.input}")
    println(s"${examples.count()} data points")

    // Summarize labels
    val labelSummary = examples.aggregate(new MultivariateOnlineSummarizer())(
      (summary, lp) => summary.add(Vectors.dense(lp.label)),
      (sum1, sum2) => sum1.merge(sum2))

    // Summarize features
    val featureSummary = examples.aggregate(new MultivariateOnlineSummarizer())(
      (summary, lp) => summary.add(lp.features),
      (sum1, sum2) => sum1.merge(sum2))

    println()
    println(s"Summary statistics")
    println(s"\tLabel\tFeatures")
    println(s"mean\t${labelSummary.mean(0)}\t${featureSummary.mean.toArray.mkString("\t")}")
    println(s"var\t${labelSummary.variance(0)}\t${featureSummary.variance.toArray.mkString("\t")}")
    println(
      s"nnz\t${labelSummary.numNonzeros(0)}\t${featureSummary.numNonzeros.toArray.mkString("\t")}")
    println(s"max\t${labelSummary.max(0)}\t${featureSummary.max.toArray.mkString("\t")}")
    println(s"min\t${labelSummary.min(0)}\t${featureSummary.min.toArray.mkString("\t")}")
    println()

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞