airflow docker 源码
airflow docker 代码
文件路径:/airflow/providers/docker/decorators/docker.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import base64
import inspect
import os
import pickle
from tempfile import TemporaryDirectory
from textwrap import dedent
from typing import TYPE_CHECKING, Callable, Sequence
import dill
from airflow.decorators.base import DecoratedOperator, task_decorator_factory
from airflow.providers.docker.operators.docker import DockerOperator
try:
from airflow.utils.decorators import remove_task_decorator
# This can be removed after we move to Airflow 2.4+
except ImportError:
from airflow.utils.python_virtualenv import remove_task_decorator
from airflow.utils.python_virtualenv import write_python_script
if TYPE_CHECKING:
from airflow.decorators.base import TaskDecorator
from airflow.utils.context import Context
def _generate_decode_command(env_var, file, python_command):
# We don't need `f.close()` as the interpreter is about to exit anyway
return (
f'{python_command} -c "import base64, os;'
rf'x = base64.b64decode(os.environ[\"{env_var}\"]);'
rf'f = open(\"{file}\", \"wb\"); f.write(x);"'
)
def _b64_encode_file(filename):
with open(filename, "rb") as file_to_encode:
return base64.b64encode(file_to_encode.read())
class _DockerDecoratedOperator(DecoratedOperator, DockerOperator):
"""
Wraps a Python callable and captures args/kwargs when called for execution.
:param python_callable: A reference to an object that is callable
:param python: Python binary name to use
:param use_dill: Whether dill should be used to serialize the callable
:param expect_airflow: whether to expect airflow to be installed in the docker environment. if this
one is specified, the script to run callable will attempt to load Airflow macros.
:param op_kwargs: a dictionary of keyword arguments that will get unpacked
in your function (templated)
:param op_args: a list of positional arguments that will get unpacked when
calling your callable (templated)
:param multiple_outputs: if set, function return value will be
unrolled to multiple XCom values. Dict will unroll to xcom values with keys as keys.
Defaults to False.
"""
custom_operator_name = "@task.docker"
template_fields: Sequence[str] = ('op_args', 'op_kwargs')
# since we won't mutate the arguments, we should just do the shallow copy
# there are some cases we can't deepcopy the objects (e.g protobuf).
shallow_copy_attrs: Sequence[str] = ('python_callable',)
def __init__(
self,
use_dill=False,
python_command='python3',
expect_airflow: bool = True,
**kwargs,
) -> None:
command = "dummy command"
self.python_command = python_command
self.expect_airflow = expect_airflow
self.pickling_library = dill if use_dill else pickle
super().__init__(
command=command, retrieve_output=True, retrieve_output_path="/tmp/script.out", **kwargs
)
def generate_command(self):
return (
f"""bash -cx '{_generate_decode_command("__PYTHON_SCRIPT", "/tmp/script.py",
self.python_command)} &&"""
f'{_generate_decode_command("__PYTHON_INPUT", "/tmp/script.in", self.python_command)} &&'
f'{self.python_command} /tmp/script.py /tmp/script.in /tmp/script.out\''
)
def execute(self, context: Context):
with TemporaryDirectory(prefix='venv') as tmp_dir:
input_filename = os.path.join(tmp_dir, 'script.in')
script_filename = os.path.join(tmp_dir, 'script.py')
with open(input_filename, 'wb') as file:
if self.op_args or self.op_kwargs:
self.pickling_library.dump({'args': self.op_args, 'kwargs': self.op_kwargs}, file)
py_source = self._get_python_source()
write_python_script(
jinja_context=dict(
op_args=self.op_args,
op_kwargs=self.op_kwargs,
pickling_library=self.pickling_library.__name__,
python_callable=self.python_callable.__name__,
python_callable_source=py_source,
expect_airflow=self.expect_airflow,
string_args_global=False,
),
filename=script_filename,
)
# Pass the python script to be executed, and the input args, via environment variables. This is
# more than slightly hacky, but it means it can work when Airflow itself is in the same Docker
# engine where this task is going to run (unlike say trying to mount a file in)
self.environment["__PYTHON_SCRIPT"] = _b64_encode_file(script_filename)
if self.op_args or self.op_kwargs:
self.environment["__PYTHON_INPUT"] = _b64_encode_file(input_filename)
else:
self.environment["__PYTHON_INPUT"] = ""
self.command = self.generate_command()
return super().execute(context)
def _get_python_source(self):
raw_source = inspect.getsource(self.python_callable)
res = dedent(raw_source)
res = remove_task_decorator(res, "@task.docker")
return res
def docker_task(
python_callable: Callable | None = None,
multiple_outputs: bool | None = None,
**kwargs,
) -> TaskDecorator:
"""
Python operator decorator. Wraps a function into an Airflow operator.
Also accepts any argument that DockerOperator will via ``kwargs``. Can be reused in a single DAG.
:param python_callable: Function to decorate
:param multiple_outputs: If set, function return value will be unrolled to multiple XCom values.
Dict will unroll to XCom values with keys as XCom keys. Defaults to False.
"""
return task_decorator_factory(
python_callable=python_callable,
multiple_outputs=multiple_outputs,
decorated_operator_class=_DockerDecoratedOperator,
**kwargs,
)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦