spark StreamingLogisticRegression 源码

  • 2022-10-20
  • 浏览 (217)

spark StreamingLogisticRegression 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.SparkConf
import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
 * Train a logistic regression model on one stream of data and make predictions
 * on another stream, where the data streams arrive as text files
 * into two different directories.
 *
 * The rows of the text files must be labeled data points in the form
 * `(y,[x1,x2,x3,...,xn])`
 * Where n is the number of features, y is a binary label, and
 * n must be the same for train and test.
 *
 * Usage: StreamingLogisticRegression <trainingDir> <testDir> <batchDuration> <numFeatures>
 *
 * To run on your local machine using the two directories `trainingDir` and `testDir`,
 * with updates every 5 seconds, and 2 features per data point, call:
 *    $ bin/run-example mllib.StreamingLogisticRegression trainingDir testDir 5 2
 *
 * As you add text files to `trainingDir` the model will continuously update.
 * Anytime you add text files to `testDir`, you'll see predictions from the current model.
 *
 */
object StreamingLogisticRegression {

  def main(args: Array[String]): Unit = {

    if (args.length != 4) {
      System.err.println(
        "Usage: StreamingLogisticRegression <trainingDir> <testDir> <batchDuration> <numFeatures>")
      System.exit(1)
    }

    val conf = new SparkConf().setMaster("local").setAppName("StreamingLogisticRegression")
    val ssc = new StreamingContext(conf, Seconds(args(2).toLong))

    val trainingData = ssc.textFileStream(args(0)).map(LabeledPoint.parse)
    val testData = ssc.textFileStream(args(1)).map(LabeledPoint.parse)

    val model = new StreamingLogisticRegressionWithSGD()
      .setInitialWeights(Vectors.zeros(args(3).toInt))

    model.trainOn(trainingData)
    model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print()

    ssc.start()
    ssc.awaitTermination()

  }

}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞