spark AQEUtils 源码

  • 2022-10-20
  • 浏览 (264)

spark AQEUtils 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/adaptive/AQEUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.adaptive

import org.apache.spark.sql.catalyst.plans.physical.{ClusteredDistribution, Distribution, HashPartitioning, UnspecifiedDistribution}
import org.apache.spark.sql.execution.{CollectMetricsExec, DeserializeToObjectExec, FilterExec, ProjectExec, SortExec, SparkPlan}
import org.apache.spark.sql.execution.exchange.{REPARTITION_BY_COL, REPARTITION_BY_NUM, ShuffleExchangeExec}

object AQEUtils {

  // Analyze the given plan and calculate the required distribution of this plan w.r.t. the
  // user-specified repartition.
  def getRequiredDistribution(p: SparkPlan): Option[Distribution] = p match {
    // User-specified repartition is only effective when it's the root node, or under
    // Project/Filter/LocalSort/CollectMetrics.
    // Note: we only care about `HashPartitioning` as `EnsureRequirements` can only optimize out
    // user-specified repartition with `HashPartitioning`.
    case ShuffleExchangeExec(h: HashPartitioning, _, shuffleOrigin)
        if shuffleOrigin == REPARTITION_BY_COL || shuffleOrigin == REPARTITION_BY_NUM =>
      val numPartitions = if (shuffleOrigin == REPARTITION_BY_NUM) {
        Some(h.numPartitions)
      } else {
        None
      }
      Some(ClusteredDistribution(h.expressions, requiredNumPartitions = numPartitions))
    case f: FilterExec => getRequiredDistribution(f.child)
    case s: SortExec if !s.global => getRequiredDistribution(s.child)
    case c: CollectMetricsExec => getRequiredDistribution(c.child)
    case d: DeserializeToObjectExec => getRequiredDistribution(d.child)
    case p: ProjectExec =>
      getRequiredDistribution(p.child).flatMap {
        case h: ClusteredDistribution =>
          if (h.clustering.forall(e => p.projectList.exists(_.semanticEquals(e)))) {
            Some(h)
          } else {
            // It's possible that the user-specified repartition is effective but the output
            // partitioning is not retained, e.g. `df.repartition(a, b).select(c)`. We can't
            // handle this case with required distribution. Here we return None and later on
            // `EnsureRequirements` will skip optimizing out the user-specified repartition.
            None
          }
        case other => Some(other)
      }
    case _ => Some(UnspecifiedDistribution)
  }
}

相关信息

spark 源码目录

相关文章

spark AQEOptimizer 源码

spark AQEPropagateEmptyRelation 源码

spark AQEShuffleReadExec 源码

spark AQEShuffleReadRule 源码

spark AdaptiveRulesHolder 源码

spark AdaptiveSparkPlanExec 源码

spark AdaptiveSparkPlanHelper 源码

spark AdjustShuffleExchangePosition 源码

spark CoalesceShufflePartitions 源码

spark DynamicJoinSelection 源码

0  赞