hadoop ChainReducer 源码
haddop ChainReducer 代码
文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/lib/chain/ChainReducer.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapreduce.lib.chain;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.chain.Chain.ChainBlockingQueue;
import java.io.IOException;
/**
* The ChainReducer class allows to chain multiple Mapper classes after a
* Reducer within the Reducer task.
*
* <p>
* For each record output by the Reducer, the Mapper classes are invoked in a
* chained (or piped) fashion. The output of the reducer becomes the input of
* the first mapper and output of first becomes the input of the second, and so
* on until the last Mapper, the output of the last Mapper will be written to
* the task's output.
* </p>
* <p>
* The key functionality of this feature is that the Mappers in the chain do not
* need to be aware that they are executed after the Reducer or in a chain. This
* enables having reusable specialized Mappers that can be combined to perform
* composite operations within a single task.
* </p>
* <p>
* Special care has to be taken when creating chains that the key/values output
* by a Mapper are valid for the following Mapper in the chain. It is assumed
* all Mappers and the Reduce in the chain use matching output and input key and
* value classes as no conversion is done by the chaining code.
* </p>
* <p> Using the ChainMapper and the ChainReducer classes is possible to
* compose Map/Reduce jobs that look like <code>[MAP+ / REDUCE MAP*]</code>. And
* immediate benefit of this pattern is a dramatic reduction in disk IO. </p>
* <p>
* IMPORTANT: There is no need to specify the output key/value classes for the
* ChainReducer, this is done by the setReducer or the addMapper for the last
* element in the chain.
* </p>
* ChainReducer usage pattern:
* <p>
*
* <pre>
* ...
* Job = new Job(conf);
* ....
*
* Configuration reduceConf = new Configuration(false);
* ...
* ChainReducer.setReducer(job, XReduce.class, LongWritable.class, Text.class,
* Text.class, Text.class, true, reduceConf);
*
* ChainReducer.addMapper(job, CMap.class, Text.class, Text.class,
* LongWritable.class, Text.class, false, null);
*
* ChainReducer.addMapper(job, DMap.class, LongWritable.class, Text.class,
* LongWritable.class, LongWritable.class, true, null);
*
* ...
*
* job.waitForCompletion(true);
* ...
* </pre>
*/
@InterfaceAudience.Public
@InterfaceStability.Stable
public class ChainReducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> extends
Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
/**
* Sets the {@link Reducer} class to the chain job.
*
* <p>
* The key and values are passed from one element of the chain to the next, by
* value. For the added Reducer the configuration given for it,
* <code>reducerConf</code>, have precedence over the job's Configuration.
* This precedence is in effect when the task is running.
* </p>
* <p>
* IMPORTANT: There is no need to specify the output key/value classes for the
* ChainReducer, this is done by the setReducer or the addMapper for the last
* element in the chain.
* </p>
*
* @param job
* the job
* @param klass
* the Reducer class to add.
* @param inputKeyClass
* reducer input key class.
* @param inputValueClass
* reducer input value class.
* @param outputKeyClass
* reducer output key class.
* @param outputValueClass
* reducer output value class.
* @param reducerConf
* a configuration for the Reducer class. It is recommended to use a
* Configuration without default values using the
* <code>Configuration(boolean loadDefaults)</code> constructor with
* FALSE.
*/
public static void setReducer(Job job, Class<? extends Reducer> klass,
Class<?> inputKeyClass, Class<?> inputValueClass,
Class<?> outputKeyClass, Class<?> outputValueClass,
Configuration reducerConf) {
job.setReducerClass(ChainReducer.class);
job.setOutputKeyClass(outputKeyClass);
job.setOutputValueClass(outputValueClass);
Chain.setReducer(job, klass, inputKeyClass, inputValueClass,
outputKeyClass, outputValueClass, reducerConf);
}
/**
* Adds a {@link Mapper} class to the chain reducer.
*
* <p>
* The key and values are passed from one element of the chain to the next, by
* value For the added Mapper the configuration given for it,
* <code>mapperConf</code>, have precedence over the job's Configuration. This
* precedence is in effect when the task is running.
* </p>
* <p>
* IMPORTANT: There is no need to specify the output key/value classes for the
* ChainMapper, this is done by the addMapper for the last mapper in the
* chain.
* </p>
*
* @param job
* The job.
* @param klass
* the Mapper class to add.
* @param inputKeyClass
* mapper input key class.
* @param inputValueClass
* mapper input value class.
* @param outputKeyClass
* mapper output key class.
* @param outputValueClass
* mapper output value class.
* @param mapperConf
* a configuration for the Mapper class. It is recommended to use a
* Configuration without default values using the
* <code>Configuration(boolean loadDefaults)</code> constructor with
* FALSE.
*/
public static void addMapper(Job job, Class<? extends Mapper> klass,
Class<?> inputKeyClass, Class<?> inputValueClass,
Class<?> outputKeyClass, Class<?> outputValueClass,
Configuration mapperConf) throws IOException {
job.setOutputKeyClass(outputKeyClass);
job.setOutputValueClass(outputValueClass);
Chain.addMapper(false, job, klass, inputKeyClass, inputValueClass,
outputKeyClass, outputValueClass, mapperConf);
}
private Chain chain;
protected void setup(Context context) {
chain = new Chain(false);
chain.setup(context.getConfiguration());
}
public void run(Context context) throws IOException, InterruptedException {
setup(context);
// if no reducer is set, just do nothing
if (chain.getReducer() == null) {
return;
}
int numMappers = chain.getAllMappers().size();
// if there are no mappers in chain, run the reducer
if (numMappers == 0) {
chain.runReducer(context);
return;
}
// add reducer and all mappers with proper context
ChainBlockingQueue<Chain.KeyValuePair<?, ?>> inputqueue;
ChainBlockingQueue<Chain.KeyValuePair<?, ?>> outputqueue;
// add reducer
outputqueue = chain.createBlockingQueue();
chain.addReducer(context, outputqueue);
// add all mappers except last one
for (int i = 0; i < numMappers - 1; i++) {
inputqueue = outputqueue;
outputqueue = chain.createBlockingQueue();
chain.addMapper(inputqueue, outputqueue, context, i);
}
// add last mapper
chain.addMapper(outputqueue, context, numMappers - 1);
// start all threads
chain.startAllThreads();
// wait for all threads
chain.joinAllThreads();
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦