airflow local_kubernetes_executor 源码
airflow local_kubernetes_executor 代码
文件路径:/airflow/executors/local_kubernetes_executor.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from typing import Sequence
from airflow.callbacks.base_callback_sink import BaseCallbackSink
from airflow.callbacks.callback_requests import CallbackRequest
from airflow.configuration import conf
from airflow.executors.base_executor import CommandType, EventBufferValueType, QueuedTaskInstanceType
from airflow.executors.kubernetes_executor import KubernetesExecutor
from airflow.executors.local_executor import LocalExecutor
from airflow.models.taskinstance import SimpleTaskInstance, TaskInstance, TaskInstanceKey
from airflow.utils.log.logging_mixin import LoggingMixin
class LocalKubernetesExecutor(LoggingMixin):
"""
LocalKubernetesExecutor consists of LocalExecutor and KubernetesExecutor.
It chooses the executor to use based on the queue defined on the task.
When the task's queue is the value of ``kubernetes_queue`` in section ``[local_kubernetes_executor]``
of the configuration (default value: `kubernetes`), KubernetesExecutor is selected to run the task,
otherwise, LocalExecutor is used.
"""
supports_ad_hoc_ti_run: bool = True
callback_sink: BaseCallbackSink | None = None
KUBERNETES_QUEUE = conf.get('local_kubernetes_executor', 'kubernetes_queue')
def __init__(self, local_executor: LocalExecutor, kubernetes_executor: KubernetesExecutor):
super().__init__()
self._job_id: str | None = None
self.local_executor = local_executor
self.kubernetes_executor = kubernetes_executor
self.kubernetes_executor.kubernetes_queue = self.KUBERNETES_QUEUE
@property
def queued_tasks(self) -> dict[TaskInstanceKey, QueuedTaskInstanceType]:
"""Return queued tasks from local and kubernetes executor"""
queued_tasks = self.local_executor.queued_tasks.copy()
queued_tasks.update(self.kubernetes_executor.queued_tasks)
return queued_tasks
@property
def running(self) -> set[TaskInstanceKey]:
"""Return running tasks from local and kubernetes executor"""
return self.local_executor.running.union(self.kubernetes_executor.running)
@property
def job_id(self) -> str | None:
"""
This is a class attribute in BaseExecutor but since this is not really an executor, but a wrapper
of executors we implement as property so we can have custom setter.
"""
return self._job_id
@job_id.setter
def job_id(self, value: str | None) -> None:
"""job_id is manipulated by SchedulerJob. We must propagate the job_id to wrapped executors."""
self._job_id = value
self.kubernetes_executor.job_id = value
self.local_executor.job_id = value
def start(self) -> None:
self.log.info("Starting local and Kubernetes Executor")
"""Start local and kubernetes executor"""
self.local_executor.start()
self.kubernetes_executor.start()
@property
def slots_available(self) -> int:
"""Number of new tasks this executor instance can accept"""
return self.local_executor.slots_available
def queue_command(
self,
task_instance: TaskInstance,
command: CommandType,
priority: int = 1,
queue: str | None = None,
) -> None:
"""Queues command via local or kubernetes executor"""
executor = self._router(task_instance)
self.log.debug("Using executor: %s for %s", executor.__class__.__name__, task_instance.key)
executor.queue_command(task_instance, command, priority, queue)
def queue_task_instance(
self,
task_instance: TaskInstance,
mark_success: bool = False,
pickle_id: str | None = None,
ignore_all_deps: bool = False,
ignore_depends_on_past: bool = False,
ignore_task_deps: bool = False,
ignore_ti_state: bool = False,
pool: str | None = None,
cfg_path: str | None = None,
) -> None:
"""Queues task instance via local or kubernetes executor"""
executor = self._router(SimpleTaskInstance.from_ti(task_instance))
self.log.debug(
"Using executor: %s to queue_task_instance for %s", executor.__class__.__name__, task_instance.key
)
executor.queue_task_instance(
task_instance,
mark_success,
pickle_id,
ignore_all_deps,
ignore_depends_on_past,
ignore_task_deps,
ignore_ti_state,
pool,
cfg_path,
)
def has_task(self, task_instance: TaskInstance) -> bool:
"""
Checks if a task is either queued or running in either local or kubernetes executor.
:param task_instance: TaskInstance
:return: True if the task is known to this executor
"""
return self.local_executor.has_task(task_instance) or self.kubernetes_executor.has_task(task_instance)
def heartbeat(self) -> None:
"""Heartbeat sent to trigger new jobs in local and kubernetes executor"""
self.local_executor.heartbeat()
self.kubernetes_executor.heartbeat()
def get_event_buffer(
self, dag_ids: list[str] | None = None
) -> dict[TaskInstanceKey, EventBufferValueType]:
"""
Returns and flush the event buffer from local and kubernetes executor
:param dag_ids: dag_ids to return events for, if None returns all
:return: a dict of events
"""
cleared_events_from_local = self.local_executor.get_event_buffer(dag_ids)
cleared_events_from_kubernetes = self.kubernetes_executor.get_event_buffer(dag_ids)
return {**cleared_events_from_local, **cleared_events_from_kubernetes}
def try_adopt_task_instances(self, tis: Sequence[TaskInstance]) -> Sequence[TaskInstance]:
"""
Try to adopt running task instances that have been abandoned by a SchedulerJob dying.
Anything that is not adopted will be cleared by the scheduler (and then become eligible for
re-scheduling)
:return: any TaskInstances that were unable to be adopted
:rtype: list[airflow.models.TaskInstance]
"""
local_tis = [ti for ti in tis if ti.queue != self.KUBERNETES_QUEUE]
kubernetes_tis = [ti for ti in tis if ti.queue == self.KUBERNETES_QUEUE]
return [
*self.local_executor.try_adopt_task_instances(local_tis),
*self.kubernetes_executor.try_adopt_task_instances(kubernetes_tis),
]
def end(self) -> None:
"""End local and kubernetes executor"""
self.local_executor.end()
self.kubernetes_executor.end()
def terminate(self) -> None:
"""Terminate local and kubernetes executor"""
self.local_executor.terminate()
self.kubernetes_executor.terminate()
def _router(self, simple_task_instance: SimpleTaskInstance) -> LocalExecutor | KubernetesExecutor:
"""
Return either local_executor or kubernetes_executor
:param simple_task_instance: SimpleTaskInstance
:return: local_executor or kubernetes_executor
:rtype: Union[LocalExecutor, KubernetesExecutor]
"""
if simple_task_instance.queue == self.KUBERNETES_QUEUE:
return self.kubernetes_executor
return self.local_executor
def debug_dump(self) -> None:
"""Called in response to SIGUSR2 by the scheduler"""
self.log.info("Dumping LocalExecutor state")
self.local_executor.debug_dump()
self.log.info("Dumping KubernetesExecutor state")
self.kubernetes_executor.debug_dump()
def send_callback(self, request: CallbackRequest) -> None:
"""Sends callback for execution.
:param request: Callback request to be executed.
"""
if not self.callback_sink:
raise ValueError("Callback sink is not ready.")
self.callback_sink.send(request)
相关信息
相关文章
airflow celery_kubernetes_executor 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦