harmony 鸿蒙@ohos.data.intelligence (ArkData Intelligence Platform)
@ohos.data.intelligence (ArkData Intelligence Platform)
The ArkData Intelligence Platform (AIP) provides on-device data intelligence capabilities, enabling AI-powered data processing data on devices. To underpin AI-powered processing on devices, the AIP aims to build the following capabilities: - Multimodal embedding model: leverages embedding models to generate vector representations for multimodal data, mapping text, images, and other data into a unified vector space for semantic-based multimodal knowledge retrieval. - Multimodal data storage: supports on-device storage for vectors, inverted indexes, and other multimodal data, eliminating the need to send raw data to the server for processing. This reduces the risk of data leakage. - Knowledge retrieval: enables semantic retrieval of user knowledge based on capabilities such as semantic indexing, knowledge graphs, recall, and re-ranking. - Knowledge generation and collation: implements efficient data organization and knowledge generation based on user data such as user documents, messages, emails, photos, videos, calendar events, and screen context, enabling the transformation of data into knowledge.
NOTE
The initial APIs of this module are supported since API version 15. Newly added APIs will be marked with a superscript to indicate their earliest API version.
Considering the significant computing workload and resources of data vectorization processing, the APIs are only available to 2-in-1 device applications.
Modules to Import
import { intelligence } from '@kit.ArkData';
intelligence.getTextEmbeddingModel
getTextEmbeddingModel(config: ModelConfig): Promise<TextEmbedding>
Obtains a text embedding model. This API uses a promise to return the result.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
config | ModelConfig | Yes | Configuration of the embedded model to obtain. |
Return value
Type | Description |
---|---|
Promise<TextEmbedding> | Promise used to return the text embedding model object. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
401 | Parameter error. Possible causes: 1. Mandatory parameters are left unspecified; 2. Incorrect parameter types. |
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
let textConfig:intelligence.ModelConfig = {
version:intelligence.ModelVersion.BASIC_MODEL,
isNpuAvailable:false,
cachePath:"/data"
}
let textEmbedding:intelligence.TextEmbedding;
intelligence.getTextEmbeddingModel(textConfig)
.then((data:intelligence.TextEmbedding) => {
console.info("Succeeded in getting TextModel");
textEmbedding = data;
})
.catch((err:BusinessError) => {
console.error("Failed to get TextModel and code is " + err.code);
})
intelligence.getImageEmbeddingModel
getImageEmbeddingModel(config: ModelConfig): Promise<ImageEmbedding>
Obtains an image embedding model. This API uses a promise to return the result.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
config | ModelConfig | Yes | Configuration of the embedded model to obtain. |
Return value
Type | Description |
---|---|
Promise<ImageEmbedding> | Promise used to return the image embedding model object. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
401 | Parameter error. Possible causes: 1. Mandatory parameters are left unspecified; 2. Incorrect parameter types. |
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
let imageConfig:intelligence.ModelConfig = {
version:intelligence.ModelVersion.BASIC_MODEL,
isNpuAvailable:false,
cachePath:"/data"
}
let imageEmbedding:intelligence.ImageEmbedding;
intelligence.getImageEmbeddingModel(imageConfig)
.then((data:intelligence.ImageEmbedding) => {
console.info("Succeeded in getting ImageModel");
imageEmbedding = data;
})
.catch((err:BusinessError) => {
console.error("Failed to get ImageModel and code is " + err.code);
})
intelligence.splitText
splitText(text: string, config: SplitConfig): Promise<Array<string>>
Splits text.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
text | string | Yes | Text to split, which can be any value. |
config | SplitConfig | Yes | Configuration for splitting the text. |
Return value
Type | Description |
---|---|
Promise<Array<string>> | Promise used to return the blocks of the text. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
401 | Parameter error. Possible causes: 1. Mandatory parameters are left unspecified; 2. Incorrect parameter types. |
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
let splitConfig:intelligence.SplitConfig = {
size:10,
overlapRatio:0.1
}
let splitText = 'text';
intelligence.splitText(splitText, splitConfig)
.then((data:Array<string>) => {
console.info("Succeeded in splitting Text");
})
.catch((err:BusinessError) => {
console.error("Failed to split Text and code is " + err.code);
})
ModelConfig
Represents the configuration an embedded model.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Name | Type | Mandatory | Description |
---|---|---|---|
version | ModelVersion | Yes | Version of the model. |
isNpuAvailable | boolean | Yes | Whether to use the NPU to accelerate the vectorization process. The value true means to use the NPU, and the value false means the opposite. If this parameter is set to true but the device does not support NPUs, loading an embedding model will trigger error 31300000. |
cachePath | string | No | Local directory for model caching if the NPU is used. The value is in the /xxx/xxx/xxx format, for example, /data. The path cannot exceed 512 characters. Default value: ”” |
ModelVersion
Enumerates the model versions.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Name | Value | Description |
---|---|---|
BASIC_MODEL | 0 | Basic embedding model version. |
Image
type Image = string
Represents the URI of an image, which is of the string type.
System capability: SystemCapability.DistributedDataManager.RelationalStore.Core
Type | Description |
---|---|
string | Image URI, which cannot exceed 512 characters. |
SplitConfig
Represents the configuration for text splitting.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Name | Type | Mandatory | Description |
---|---|---|---|
size | number | Yes | Maximum size of a block. The value is a non-negative integer. |
overlapRatio | number | Yes | Overlap ratio between adjacent blocks. Value range: [0,1] The value 0 indicates the lowest overlap ratio, and 1 indicates the highest overlap ratio. |
TextEmbedding
Provides APIs for manipulating text embedding models.
Before calling any of the following APIs, you must obtain a TextEmbedding instance by using intelligence.getTextEmbeddingModel.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
loadModel
loadModel(): Promise<void>
Loads this embedding model. This API uses a promise to return the result.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Return value
Type | Description |
---|---|
Promise<void> | Promise that returns no value. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
textEmbedding.loadModel()
.then(() => {
console.info("Succeeded in loading Model");
})
.catch((err:BusinessError) => {
console.error("Failed to load Model and code is " + err.code);
})
releaseModel
releaseModel(): Promise<void>
Releases this embedding model. This API uses a promise to return the result.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Return value
Type | Description |
---|---|
Promise<void> | Promise that returns no value. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
textEmbedding.releaseModel()
.then(() => {
console.info("Succeeded in releasing Model");
})
.catch((err:BusinessError) => {
console.error("Failed to release Model and code is " + err.code);
})
getEmbedding
getEmbedding(text: string): Promise<Array<number>>
Obtains the embedding vector of the given text.
Before calling this API, ensure that an embedding model is successfully loaded by using loadModel.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
text | string | Yes | Text for the embedding model. It cannot exceed 512 characters. |
Return value
Type | Description |
---|---|
Promise<Array<number>> | Promise used to return the vectorization result. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
401 | Parameter error. Possible causes: 1. Mandatory parameters are left unspecified; 2. Incorrect parameter types. |
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
textEmbedding.loadModel();
let text = 'text';
textEmbedding.getEmbedding(text)
.then((data:Array<number>) => {
console.info("Succeeded in getting Embedding");
})
.catch((err:BusinessError) => {
console.error("Failed to get Embedding and code is " + err.code);
})
getEmbedding
getEmbedding(batchTexts: Array<string>): Promise<Array<Array<number>>>
Obtains the embedding vector of a given batch of texts.
Before calling this API, ensure that an embedding model is successfully loaded by using loadModel.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
batchTexts | Array<string> | Yes | Batch of texts, each of which cannot exceed 512 characters. |
Return value
Type | Description |
---|---|
Promise<Array<Array<number>>> | Promise used to return the vectorization result. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
401 | Parameter error. Possible causes: 1. Mandatory parameters are left unspecified; 2. Incorrect parameter types. |
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
textEmbedding.loadModel();
let batchTexts = ['text1','text2'];
textEmbedding.getEmbedding(batchTexts)
.then((data:Array<Array<number>>) => {
console.info("Succeeded in getting Embedding");
})
.catch((err:BusinessError) => {
console.error("Failed to get Embedding and code is " + err.code);
})
ImageEmbedding
Provides APIs for manipulating image embedding models.
Before calling any of the following APIs, you must obtain a ImageEmbedding instance by using intelligence.getImageEmbeddingModel.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
loadModel
loadModel(): Promise<void>
Loads this embedding model. This API uses a promise to return the result.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Return value
Type | Description |
---|---|
Promise<void> | Promise that returns no value. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
imageEmbedding.loadModel()
.then(() => {
console.info("Succeeded in loading Model");
})
.catch((err:BusinessError) => {
console.error("Failed to load Model and code is " + err.code);
})
releaseModel
releaseModel(): Promise<void>
Releases this embedding model. This API uses a promise to return the result.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Return value
Type | Description |
---|---|
Promise<void> | Promise that returns no value. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
imageEmbedding.releaseModel()
.then(() => {
console.info("Succeeded in releasing Model");
})
.catch((err:BusinessError) => {
console.error("Failed to release Model and code is " + err.code);
})
getEmbedding
getEmbedding(image: Image): Promise<Array<number>>
Obtains the embedding vector of the given image.
Before calling this API, ensure that an embedding model is successfully loaded by using loadModel.
System capability: SystemCapability.DistributedDataManager.DataIntelligence.Core
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
image | Image | Yes | URI of the target image. |
Return value
Type | Description |
---|---|
Promise<Array<number>> | Promise used to return the vectorization result. |
Error codes
For details about the error codes, see Common Error Codes and AIP Error Codes.
ID | Error Message |
---|---|
401 | Parameter error. Possible causes: 1. Mandatory parameters are left unspecified; 2. Incorrect parameter types. |
801 | Capability not supported. |
31300000 | Inner error. |
Example
import { BusinessError } from '@kit.BasicServicesKit';
imageEmbedding.loadModel();
let image = 'file://<packageName>/data/storage/el2/base/haps/entry/files/xxx.jpg';
imageEmbedding.getEmbedding(image)
.then((data:Array<number>) => {
console.info("Succeeded in getting Embedding");
})
.catch((err:BusinessError) => {
console.error("Failed to get Embedding and code is " + err.code);
})
你可能感兴趣的鸿蒙文章
- 所属分类: 后端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦