spark LiveJournalPageRank 源码
spark LiveJournalPageRank 代码
文件路径:/examples/src/main/scala/org/apache/spark/examples/graphx/LiveJournalPageRank.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// scalastyle:off println
package org.apache.spark.examples.graphx
/**
* Uses GraphX to run PageRank on a LiveJournal social network graph. Download the dataset from
* http://snap.stanford.edu/data/soc-LiveJournal1.html.
*/
object LiveJournalPageRank {
def main(args: Array[String]): Unit = {
if (args.length < 1) {
System.err.println(
"Usage: LiveJournalPageRank <edge_list_file>\n" +
" --numEPart=<num_edge_partitions>\n" +
" The number of partitions for the graph's edge RDD.\n" +
" [--tol=<tolerance>]\n" +
" The tolerance allowed at convergence (smaller => more accurate). Default is " +
"0.001.\n" +
" [--output=<output_file>]\n" +
" If specified, the file to write the ranks to.\n" +
" [--partStrategy=RandomVertexCut | EdgePartition1D | EdgePartition2D | " +
"CanonicalRandomVertexCut]\n" +
" The way edges are assigned to edge partitions. Default is RandomVertexCut.")
System.exit(-1)
}
Analytics.main(args.patch(0, List("pagerank"), 0))
}
}
// scalastyle:on println
相关信息
相关文章
spark AggregateMessagesExample 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦