spark IsotonicRegressionExample 源码

  • 2022-10-20
  • 浏览 (248)

spark IsotonicRegressionExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/IsotonicRegressionExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.{SparkConf, SparkContext}
// $example on$
import org.apache.spark.mllib.regression.{IsotonicRegression, IsotonicRegressionModel}
import org.apache.spark.mllib.util.MLUtils
// $example off$

object IsotonicRegressionExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("IsotonicRegressionExample")
    val sc = new SparkContext(conf)
    // $example on$
    val data = MLUtils.loadLibSVMFile(sc,
      "data/mllib/sample_isotonic_regression_libsvm_data.txt").cache()

    // Create label, feature, weight tuples from input data with weight set to default value 1.0.
    val parsedData = data.map { labeledPoint =>
      (labeledPoint.label, labeledPoint.features(0), 1.0)
    }

    // Split data into training (60%) and test (40%) sets.
    val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
    val training = splits(0)
    val test = splits(1)

    // Create isotonic regression model from training data.
    // Isotonic parameter defaults to true so it is only shown for demonstration
    val model = new IsotonicRegression().setIsotonic(true).run(training)

    // Create tuples of predicted and real labels.
    val predictionAndLabel = test.map { point =>
      val predictedLabel = model.predict(point._2)
      (predictedLabel, point._1)
    }

    // Calculate mean squared error between predicted and real labels.
    val meanSquaredError = predictionAndLabel.map { case (p, l) => math.pow((p - l), 2) }.mean()
    println(s"Mean Squared Error = $meanSquaredError")

    // Save and load model
    model.save(sc, "target/tmp/myIsotonicRegressionModel")
    val sameModel = IsotonicRegressionModel.load(sc, "target/tmp/myIsotonicRegressionModel")
    // $example off$

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞