kafka BaseHashTable 源码

  • 2022-10-20
  • 浏览 (219)

kafka BaseHashTable 代码

文件路径:/metadata/src/main/java/org/apache/kafka/timeline/BaseHashTable.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.kafka.timeline;

import java.util.ArrayList;
import java.util.List;

/**
 * A hash table which uses separate chaining.
 *
 * In order to optimize memory consumption a bit, the common case where there is
 * one element per slot is handled by simply placing the element in the slot,
 * and the case where there are multiple elements is handled by creating an
 * array and putting that in the slot.  Java is storing type info in memory
 * about every object whether we want it or not, so let's get some benefit
 * out of it.
 *
 * Arrays and null values cannot be inserted.
 */
@SuppressWarnings("unchecked")
class BaseHashTable<T> {
    /**
     * The maximum load factor we will allow the hash table to climb to before expanding.
     */
    private final static double MAX_LOAD_FACTOR = 0.75f;

    /**
     * The minimum number of slots we can have in the hash table.
     */
    final static int MIN_CAPACITY = 2;

    /**
     * The maximum number of slots we can have in the hash table.
     */
    final static int MAX_CAPACITY = 1 << 30;

    private Object[] elements;
    private int size = 0;

    BaseHashTable(int expectedSize) {
        this.elements = new Object[expectedSizeToCapacity(expectedSize)];
    }

    /**
     * Calculate the capacity we should provision, given the expected size.
     *
     * Our capacity must always be a power of 2, and never less than 2 or more
     * than MAX_CAPACITY.  We use 64-bit numbers here to avoid overflow
     * concerns.
     */
    static int expectedSizeToCapacity(int expectedSize) {
        long minCapacity = (long) Math.ceil((float) expectedSize / MAX_LOAD_FACTOR);
        return Math.max(MIN_CAPACITY,
                (int) Math.min(MAX_CAPACITY, roundUpToPowerOfTwo(minCapacity)));
    }

    private static long roundUpToPowerOfTwo(long i) {
        if (i <= 0) {
            return 0;
        } else if (i > (1L << 62)) {
            throw new ArithmeticException("There are no 63-bit powers of 2 higher than " +
                    "or equal to " + i);
        } else {
            return 1L << -Long.numberOfLeadingZeros(i - 1);
        }
    }

    final int baseSize() {
        return size;
    }

    final Object[] baseElements() {
        return elements;
    }

    final T baseGet(Object key) {
        int slot = findSlot(key, elements.length);
        Object value = elements[slot];
        if (value == null) {
            return null;
        } else if (value instanceof Object[]) {
            T[] array = (T[]) value;
            for (T object : array) {
                if (object.equals(key)) {
                    return object;
                }
            }
            return null;
        } else if (value.equals(key)) {
            return (T) value;
        } else {
            return null;
        }
    }

    final T baseAddOrReplace(T newObject) {
        if (((size + 1) * MAX_LOAD_FACTOR > elements.length) &&
                (elements.length < MAX_CAPACITY)) {
            int newSize = elements.length * 2;
            rehash(newSize);
        }
        int slot = findSlot(newObject, elements.length);
        Object cur = elements[slot];
        if (cur == null) {
            size++;
            elements[slot] = newObject;
            return null;
        } else if (cur instanceof Object[]) {
            T[] curArray = (T[]) cur;
            for (int i =  0; i < curArray.length; i++) {
                T value = curArray[i];
                if (value.equals(newObject)) {
                    curArray[i] = newObject;
                    return value;
                }
            }
            size++;
            T[] newArray = (T[]) new Object[curArray.length + 1];
            System.arraycopy(curArray, 0, newArray, 0, curArray.length);
            newArray[curArray.length] = newObject;
            elements[slot] = newArray;
            return null;
        } else if (cur.equals(newObject)) {
            elements[slot] = newObject;
            return (T) cur;
        } else {
            size++;
            elements[slot] = new Object[] {cur, newObject};
            return null;
        }
    }

    final T baseRemove(Object key) {
        int slot = findSlot(key, elements.length);
        Object object = elements[slot];
        if (object == null) {
            return null;
        } else if (object instanceof Object[]) {
            Object[] curArray = (Object[]) object;
            for (int i = 0; i < curArray.length; i++) {
                if (curArray[i].equals(key)) {
                    size--;
                    if (curArray.length <= 2) {
                        int j = i == 0 ? 1 : 0;
                        elements[slot] = curArray[j];
                    } else {
                        Object[] newArray = new Object[curArray.length - 1];
                        System.arraycopy(curArray, 0, newArray, 0, i);
                        System.arraycopy(curArray, i + 1, newArray, i, curArray.length - 1 - i);
                        elements[slot] = newArray;
                    }
                    return (T) curArray[i];
                }
            }
            return null;
        } else if (object.equals(key)) {
            size--;
            elements[slot] = null;
            return (T) object;
        } else {
            return null;
        }
    }

    /**
     * Expand the hash table to a new size.  Existing elements will be copied to new slots.
     */
    final private void rehash(int newSize) {
        Object[] prevElements = elements;
        elements = new Object[newSize];
        List<Object> ready = new ArrayList<>();
        for (int slot = 0; slot < prevElements.length; slot++) {
            unpackSlot(ready, prevElements, slot);
            for (Object object : ready) {
                int newSlot = findSlot(object, elements.length);
                Object cur = elements[newSlot];
                if (cur == null) {
                    elements[newSlot] = object;
                } else if (cur instanceof Object[]) {
                    Object[] curArray = (Object[]) cur;
                    Object[] newArray = new Object[curArray.length + 1];
                    System.arraycopy(curArray, 0, newArray, 0, curArray.length);
                    newArray[curArray.length] = object;
                    elements[newSlot] = newArray;
                } else {
                    elements[newSlot] = new Object[]{cur, object};
                }
            }
            ready.clear();
        }
    }

    /**
     * Find the slot in the array that an element should go into.
     */
    static int findSlot(Object object, int numElements) {
        // This performs a secondary hash using Knuth's multiplicative Fibonacci
        // hashing.  Then, we choose some of the highest bits.  The number of bits
        // we choose is based on the table size.  If the size is 2, we need 1 bit;
        // if the size is 4, we need 2 bits, etc.
        int objectHashCode = object.hashCode();
        int log2size = 32 - Integer.numberOfLeadingZeros(numElements);
        int shift = 65 - log2size;
        return (int) ((objectHashCode * -7046029254386353131L) >>> shift);
    }

    /**
     * Copy any elements in the given slot into the output list.
     */
    static <T> void unpackSlot(List<T> out, Object[] elements, int slot) {
        Object value = elements[slot];
        if (value == null) {
            return;
        } else if (value instanceof Object[]) {
            Object[] array = (Object[]) value;
            for (Object object : array) {
                out.add((T) object);
            }
        } else {
            out.add((T) value);
        }
    }

    String baseToDebugString() {
        StringBuilder bld = new StringBuilder();
        bld.append("BaseHashTable{");
        for (int i = 0; i < elements.length; i++) {
            Object slotObject = elements[i];
            bld.append(String.format("%n%d: ", i));
            if (slotObject == null) {
                bld.append("null");
            } else if (slotObject instanceof Object[]) {
                Object[] array = (Object[]) slotObject;
                String prefix = "";
                for (Object object : array) {
                    bld.append(prefix);
                    prefix = ", ";
                    bld.append(object);
                }
            } else {
                bld.append(slotObject);
            }
        }
        bld.append(String.format("%n}"));
        return bld.toString();
    }
}

相关信息

kafka 源码目录

相关文章

kafka Delta 源码

kafka Revertable 源码

kafka Snapshot 源码

kafka SnapshotRegistry 源码

kafka SnapshottableHashTable 源码

kafka TimelineHashMap 源码

kafka TimelineHashSet 源码

kafka TimelineInteger 源码

kafka TimelineLong 源码

kafka TimelineObject 源码

0  赞