hadoop IntegerSplitter 源码

  • 2022-10-20
  • 浏览 (135)

haddop IntegerSplitter 代码

文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapreduce/lib/db/IntegerSplitter.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.mapreduce.lib.db;

import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.MRJobConfig;

/**
 * Implement DBSplitter over integer values.
 */
@InterfaceAudience.Public
@InterfaceStability.Evolving
public class IntegerSplitter implements DBSplitter {
  public List<InputSplit> split(Configuration conf, ResultSet results, String colName)
      throws SQLException {

    long minVal = results.getLong(1);
    long maxVal = results.getLong(2);

    String lowClausePrefix = colName + " >= ";
    String highClausePrefix = colName + " < ";

    int numSplits = conf.getInt(MRJobConfig.NUM_MAPS, 1);
    if (numSplits < 1) {
      numSplits = 1;
    }

    if (results.getString(1) == null && results.getString(2) == null) {
      // Range is null to null. Return a null split accordingly.
      List<InputSplit> splits = new ArrayList<InputSplit>();
      splits.add(new DataDrivenDBInputFormat.DataDrivenDBInputSplit(
          colName + " IS NULL", colName + " IS NULL"));
      return splits;
    }

    // Get all the split points together.
    List<Long> splitPoints = split(numSplits, minVal, maxVal);
    List<InputSplit> splits = new ArrayList<InputSplit>();

    // Turn the split points into a set of intervals.
    long start = splitPoints.get(0);
    for (int i = 1; i < splitPoints.size(); i++) {
      long end = splitPoints.get(i);

      if (i == splitPoints.size() - 1) {
        // This is the last one; use a closed interval.
        splits.add(new DataDrivenDBInputFormat.DataDrivenDBInputSplit(
            lowClausePrefix + Long.toString(start),
            colName + " <= " + Long.toString(end)));
      } else {
        // Normal open-interval case.
        splits.add(new DataDrivenDBInputFormat.DataDrivenDBInputSplit(
            lowClausePrefix + Long.toString(start),
            highClausePrefix + Long.toString(end)));
      }

      start = end;
    }

    if (results.getString(1) == null || results.getString(2) == null) {
      // At least one extrema is null; add a null split.
      splits.add(new DataDrivenDBInputFormat.DataDrivenDBInputSplit(
          colName + " IS NULL", colName + " IS NULL"));
    }

    return splits;
  }

  /**
   * Returns a list of longs one element longer than the list of input splits.
   * This represents the boundaries between input splits.
   * All splits are open on the top end, except the last one.
   *
   * So the list [0, 5, 8, 12, 18] would represent splits capturing the intervals:
   *
   * [0, 5)
   * [5, 8)
   * [8, 12)
   * [12, 18] note the closed interval for the last split.
   */
  List<Long> split(long numSplits, long minVal, long maxVal)
      throws SQLException {

    List<Long> splits = new ArrayList<Long>();

    // Use numSplits as a hint. May need an extra task if the size doesn't
    // divide cleanly.

    long splitSize = (maxVal - minVal) / numSplits;
    if (splitSize < 1) {
      splitSize = 1;
    }

    long curVal = minVal;

    while (curVal <= maxVal) {
      splits.add(curVal);
      curVal += splitSize;
    }

    if (splits.get(splits.size() - 1) != maxVal || splits.size() == 1) {
      // We didn't end on the maxVal. Add that to the end of the list.
      splits.add(maxVal);
    }

    return splits;
  }
}

相关信息

hadoop 源码目录

相关文章

hadoop BigDecimalSplitter 源码

hadoop BooleanSplitter 源码

hadoop DBConfiguration 源码

hadoop DBInputFormat 源码

hadoop DBOutputFormat 源码

hadoop DBRecordReader 源码

hadoop DBSplitter 源码

hadoop DBWritable 源码

hadoop DataDrivenDBInputFormat 源码

hadoop DataDrivenDBRecordReader 源码

0  赞