spark TFIDFExample 源码

  • 2022-10-20
  • 浏览 (210)

spark TFIDFExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/mllib/TFIDFExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.mllib

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
// $example on$
import org.apache.spark.mllib.feature.{HashingTF, IDF}
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.rdd.RDD
// $example off$

object TFIDFExample {

  def main(args: Array[String]): Unit = {

    val conf = new SparkConf().setAppName("TFIDFExample")
    val sc = new SparkContext(conf)

    // $example on$
    // Load documents (one per line).
    val documents: RDD[Seq[String]] = sc.textFile("data/mllib/kmeans_data.txt")
      .map(_.split(" ").toSeq)

    val hashingTF = new HashingTF()
    val tf: RDD[Vector] = hashingTF.transform(documents)

    // While applying HashingTF only needs a single pass to the data, applying IDF needs two passes:
    // First to compute the IDF vector and second to scale the term frequencies by IDF.
    tf.cache()
    val idf = new IDF().fit(tf)
    val tfidf: RDD[Vector] = idf.transform(tf)

    // spark.mllib IDF implementation provides an option for ignoring terms which occur in less than
    // a minimum number of documents. In such cases, the IDF for these terms is set to 0.
    // This feature can be used by passing the minDocFreq value to the IDF constructor.
    val idfIgnore = new IDF(minDocFreq = 2).fit(tf)
    val tfidfIgnore: RDD[Vector] = idfIgnore.transform(tf)
    // $example off$

    println("tfidf: ")
    tfidf.collect.foreach(x => println(x))

    println("tfidfIgnore: ")
    tfidfIgnore.collect.foreach(x => println(x))

    sc.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AbstractParams 源码

spark AssociationRulesExample 源码

spark BinaryClassification 源码

spark BinaryClassificationMetricsExample 源码

spark BisectingKMeansExample 源码

spark ChiSqSelectorExample 源码

spark Correlations 源码

spark CorrelationsExample 源码

spark CosineSimilarity 源码

spark DecisionTreeClassificationExample 源码

0  赞