spark Analyzer 源码

  • 2022-10-20
  • 浏览 (255)

spark Analyzer 代码

文件路径:/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.catalyst.analysis

import java.util
import java.util.Locale
import java.util.concurrent.atomic.AtomicBoolean

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.util.{Failure, Random, Success, Try}

import org.apache.spark.sql.AnalysisException
import org.apache.spark.sql.catalyst._
import org.apache.spark.sql.catalyst.catalog._
import org.apache.spark.sql.catalyst.encoders.OuterScopes
import org.apache.spark.sql.catalyst.expressions.{Expression, FrameLessOffsetWindowFunction, _}
import org.apache.spark.sql.catalyst.expressions.SubExprUtils._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.expressions.objects._
import org.apache.spark.sql.catalyst.optimizer.OptimizeUpdateFields
import org.apache.spark.sql.catalyst.plans._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.streaming.StreamingRelationV2
import org.apache.spark.sql.catalyst.trees.{AlwaysProcess, CurrentOrigin}
import org.apache.spark.sql.catalyst.trees.CurrentOrigin.withOrigin
import org.apache.spark.sql.catalyst.trees.TreePattern._
import org.apache.spark.sql.catalyst.util.{toPrettySQL, CharVarcharUtils, StringUtils}
import org.apache.spark.sql.catalyst.util.ResolveDefaultColumns._
import org.apache.spark.sql.connector.catalog._
import org.apache.spark.sql.connector.catalog.CatalogV2Implicits._
import org.apache.spark.sql.connector.catalog.TableChange.{After, ColumnPosition}
import org.apache.spark.sql.connector.catalog.functions.{AggregateFunction => V2AggregateFunction, ScalarFunction, UnboundFunction}
import org.apache.spark.sql.connector.expressions.{FieldReference, IdentityTransform, Transform}
import org.apache.spark.sql.errors.{QueryCompilationErrors, QueryExecutionErrors}
import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Relation
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.internal.SQLConf.{PartitionOverwriteMode, StoreAssignmentPolicy}
import org.apache.spark.sql.internal.connector.V1Function
import org.apache.spark.sql.types._
import org.apache.spark.sql.types.DayTimeIntervalType.DAY
import org.apache.spark.sql.util.{CaseInsensitiveStringMap, SchemaUtils}
import org.apache.spark.unsafe.types.CalendarInterval
import org.apache.spark.util.Utils
import org.apache.spark.util.collection.{Utils => CUtils}

/**
 * A trivial [[Analyzer]] with a dummy [[SessionCatalog]] and
 * [[EmptyTableFunctionRegistry]]. Used for testing when all relations are already filled
 * in and the analyzer needs only to resolve attribute references.
 *
 * Built-in function registry is set for Spark Connect project to test unresolved
 * functions.
 */
object SimpleAnalyzer extends Analyzer(
  new CatalogManager(
    FakeV2SessionCatalog,
    new SessionCatalog(
      new InMemoryCatalog,
      FunctionRegistry.builtin,
      EmptyTableFunctionRegistry) {
      override def createDatabase(dbDefinition: CatalogDatabase, ignoreIfExists: Boolean): Unit = {}
    })) {
  override def resolver: Resolver = caseSensitiveResolution
}

object FakeV2SessionCatalog extends TableCatalog with FunctionCatalog {
  private def fail() = throw new UnsupportedOperationException
  override def listTables(namespace: Array[String]): Array[Identifier] = fail()
  override def loadTable(ident: Identifier): Table = {
    throw new NoSuchTableException(ident.asMultipartIdentifier)
  }
  override def createTable(
      ident: Identifier,
      schema: StructType,
      partitions: Array[Transform],
      properties: util.Map[String, String]): Table = fail()
  override def alterTable(ident: Identifier, changes: TableChange*): Table = fail()
  override def dropTable(ident: Identifier): Boolean = fail()
  override def renameTable(oldIdent: Identifier, newIdent: Identifier): Unit = fail()
  override def initialize(name: String, options: CaseInsensitiveStringMap): Unit = fail()
  override def name(): String = CatalogManager.SESSION_CATALOG_NAME
  override def listFunctions(namespace: Array[String]): Array[Identifier] = fail()
  override def loadFunction(ident: Identifier): UnboundFunction = fail()
}

/**
 * Provides a way to keep state during the analysis, mostly for resolving views and subqueries.
 * This enables us to decouple the concerns of analysis environment from the catalog and resolve
 * star expressions in subqueries that reference the outer query plans.
 * The state that is kept here is per-query.
 *
 * Note this is thread local.
 *
 * @param catalogAndNamespace The catalog and namespace used in the view resolution. This overrides
 *                            the current catalog and namespace when resolving relations inside
 *                            views.
 * @param nestedViewDepth The nested depth in the view resolution, this enables us to limit the
 *                        depth of nested views.
 * @param maxNestedViewDepth The maximum allowed depth of nested view resolution.
 * @param relationCache A mapping from qualified table names to resolved relations. This can ensure
 *                      that the table is resolved only once if a table is used multiple times
 *                      in a query.
 * @param referredTempViewNames All the temp view names referred by the current view we are
 *                              resolving. It's used to make sure the relation resolution is
 *                              consistent between view creation and view resolution. For example,
 *                              if `t` was a permanent table when the current view was created, it
 *                              should still be a permanent table when resolving the current view,
 *                              even if a temp view `t` has been created.
 * @param outerPlan The query plan from the outer query that can be used to resolve star
 *                  expressions in a subquery.
 */
case class AnalysisContext(
    catalogAndNamespace: Seq[String] = Nil,
    nestedViewDepth: Int = 0,
    maxNestedViewDepth: Int = -1,
    relationCache: mutable.Map[Seq[String], LogicalPlan] = mutable.Map.empty,
    referredTempViewNames: Seq[Seq[String]] = Seq.empty,
    // 1. If we are resolving a view, this field will be restored from the view metadata,
    //    by calling `AnalysisContext.withAnalysisContext(viewDesc)`.
    // 2. If we are not resolving a view, this field will be updated everytime the analyzer
    //    lookup a temporary function. And export to the view metadata.
    referredTempFunctionNames: mutable.Set[String] = mutable.Set.empty,
    outerPlan: Option[LogicalPlan] = None)

object AnalysisContext {
  private val value = new ThreadLocal[AnalysisContext]() {
    override def initialValue: AnalysisContext = AnalysisContext()
  }

  def get: AnalysisContext = value.get()
  def reset(): Unit = value.remove()

  private def set(context: AnalysisContext): Unit = value.set(context)

  def withAnalysisContext[A](viewDesc: CatalogTable)(f: => A): A = {
    val originContext = value.get()
    val maxNestedViewDepth = if (originContext.maxNestedViewDepth == -1) {
      // Here we start to resolve views, get `maxNestedViewDepth` from configs.
      SQLConf.get.maxNestedViewDepth
    } else {
      originContext.maxNestedViewDepth
    }
    val context = AnalysisContext(
      viewDesc.viewCatalogAndNamespace,
      originContext.nestedViewDepth + 1,
      maxNestedViewDepth,
      originContext.relationCache,
      viewDesc.viewReferredTempViewNames,
      mutable.Set(viewDesc.viewReferredTempFunctionNames: _*))
    set(context)
    try f finally { set(originContext) }
  }

  def withNewAnalysisContext[A](f: => A): A = {
    val originContext = value.get()
    reset()
    try f finally { set(originContext) }
  }

  def withOuterPlan[A](outerPlan: LogicalPlan)(f: => A): A = {
    val originContext = value.get()
    val context = originContext.copy(outerPlan = Some(outerPlan))
    set(context)
    try f finally { set(originContext) }
  }
}

/**
 * Provides a logical query plan analyzer, which translates [[UnresolvedAttribute]]s and
 * [[UnresolvedRelation]]s into fully typed objects using information in a [[SessionCatalog]].
 */
class Analyzer(override val catalogManager: CatalogManager)
  extends RuleExecutor[LogicalPlan] with CheckAnalysis with SQLConfHelper {

  private val v1SessionCatalog: SessionCatalog = catalogManager.v1SessionCatalog

  override protected def isPlanIntegral(
      previousPlan: LogicalPlan,
      currentPlan: LogicalPlan): Boolean = {
    !Utils.isTesting || LogicalPlanIntegrity.checkIfExprIdsAreGloballyUnique(currentPlan)
  }

  override def isView(nameParts: Seq[String]): Boolean = v1SessionCatalog.isView(nameParts)

  // Only for tests.
  def this(catalog: SessionCatalog) = {
    this(new CatalogManager(FakeV2SessionCatalog, catalog))
  }

  def executeAndCheck(plan: LogicalPlan, tracker: QueryPlanningTracker): LogicalPlan = {
    if (plan.analyzed) return plan
    AnalysisHelper.markInAnalyzer {
      val analyzed = executeAndTrack(plan, tracker)
      try {
        checkAnalysis(analyzed)
        analyzed
      } catch {
        case e: AnalysisException =>
          val ae = e.copy(plan = Option(analyzed))
          ae.setStackTrace(e.getStackTrace)
          throw ae
      }
    }
  }

  override def execute(plan: LogicalPlan): LogicalPlan = {
    AnalysisContext.withNewAnalysisContext {
      executeSameContext(plan)
    }
  }

  private def executeSameContext(plan: LogicalPlan): LogicalPlan = super.execute(plan)

  def resolver: Resolver = conf.resolver

  /**
   * If the plan cannot be resolved within maxIterations, analyzer will throw exception to inform
   * user to increase the value of SQLConf.ANALYZER_MAX_ITERATIONS.
   */
  protected def fixedPoint =
    FixedPoint(
      conf.analyzerMaxIterations,
      errorOnExceed = true,
      maxIterationsSetting = SQLConf.ANALYZER_MAX_ITERATIONS.key)

  /**
   * Override to provide additional rules for the "Resolution" batch.
   */
  val extendedResolutionRules: Seq[Rule[LogicalPlan]] = Nil

  /**
   * Override to provide rules to do post-hoc resolution. Note that these rules will be executed
   * in an individual batch. This batch is to run right after the normal resolution batch and
   * execute its rules in one pass.
   */
  val postHocResolutionRules: Seq[Rule[LogicalPlan]] = Nil

  private def typeCoercionRules(): List[Rule[LogicalPlan]] = if (conf.ansiEnabled) {
    AnsiTypeCoercion.typeCoercionRules
  } else {
    TypeCoercion.typeCoercionRules
  }

  override def batches: Seq[Batch] = Seq(
    Batch("Substitution", fixedPoint,
      // This rule optimizes `UpdateFields` expression chains so looks more like optimization rule.
      // However, when manipulating deeply nested schema, `UpdateFields` expression tree could be
      // very complex and make analysis impossible. Thus we need to optimize `UpdateFields` early
      // at the beginning of analysis.
      OptimizeUpdateFields,
      CTESubstitution,
      WindowsSubstitution,
      EliminateUnions,
      SubstituteUnresolvedOrdinals),
    Batch("Disable Hints", Once,
      new ResolveHints.DisableHints),
    Batch("Hints", fixedPoint,
      ResolveHints.ResolveJoinStrategyHints,
      ResolveHints.ResolveCoalesceHints),
    Batch("Simple Sanity Check", Once,
      LookupFunctions),
    Batch("Keep Legacy Outputs", Once,
      KeepLegacyOutputs),
    Batch("Resolution", fixedPoint,
      new ResolveCatalogs(catalogManager) ::
      ResolveUserSpecifiedColumns ::
      ResolveInsertInto ::
      ResolveRelations ::
      ResolvePartitionSpec ::
      ResolveFieldNameAndPosition ::
      AddMetadataColumns ::
      DeduplicateRelations ::
      ResolveReferences ::
      ResolveExpressionsWithNamePlaceholders ::
      ResolveDeserializer ::
      ResolveNewInstance ::
      ResolveUpCast ::
      ResolveGroupingAnalytics ::
      ResolvePivot ::
      ResolveUnpivot ::
      ResolveOrdinalInOrderByAndGroupBy ::
      ResolveAggAliasInGroupBy ::
      ResolveMissingReferences ::
      ExtractGenerator ::
      ResolveGenerate ::
      ResolveFunctions ::
      ResolveAliases ::
      ResolveSubquery ::
      ResolveSubqueryColumnAliases ::
      ResolveWindowOrder ::
      ResolveWindowFrame ::
      ResolveNaturalAndUsingJoin ::
      ResolveOutputRelation ::
      ExtractWindowExpressions ::
      GlobalAggregates ::
      ResolveAggregateFunctions ::
      TimeWindowing ::
      SessionWindowing ::
      ResolveDefaultColumns(v1SessionCatalog) ::
      ResolveInlineTables ::
      ResolveLambdaVariables ::
      ResolveTimeZone ::
      ResolveRandomSeed ::
      ResolveBinaryArithmetic ::
      ResolveUnion ::
      RewriteDeleteFromTable ::
      typeCoercionRules ++
      Seq(ResolveWithCTE) ++
      extendedResolutionRules : _*),
    Batch("Remove TempResolvedColumn", Once, RemoveTempResolvedColumn),
    Batch("Post-Hoc Resolution", Once,
      Seq(ResolveCommandsWithIfExists) ++
      postHocResolutionRules: _*),
    Batch("Remove Unresolved Hints", Once,
      new ResolveHints.RemoveAllHints),
    Batch("Nondeterministic", Once,
      PullOutNondeterministic),
    Batch("UDF", Once,
      HandleNullInputsForUDF,
      ResolveEncodersInUDF),
    Batch("UpdateNullability", Once,
      UpdateAttributeNullability),
    Batch("Subquery", Once,
      UpdateOuterReferences),
    Batch("Cleanup", fixedPoint,
      CleanupAliases),
    Batch("HandleAnalysisOnlyCommand", Once,
      HandleAnalysisOnlyCommand)
  )

  /**
   * For [[Add]]:
   * 1. if both side are interval, stays the same;
   * 2. else if one side is date and the other is interval,
   *    turns it to [[DateAddInterval]];
   * 3. else if one side is interval, turns it to [[TimeAdd]];
   * 4. else if one side is date, turns it to [[DateAdd]] ;
   * 5. else stays the same.
   *
   * For [[Subtract]]:
   * 1. if both side are interval, stays the same;
   * 2. else if the left side is date and the right side is interval,
   *    turns it to [[DateAddInterval(l, -r)]];
   * 3. else if the right side is an interval, turns it to [[TimeAdd(l, -r)]];
   * 4. else if one side is timestamp, turns it to [[SubtractTimestamps]];
   * 5. else if the right side is date, turns it to [[DateDiff]]/[[SubtractDates]];
   * 6. else if the left side is date, turns it to [[DateSub]];
   * 7. else turns it to stays the same.
   *
   * For [[Multiply]]:
   * 1. If one side is interval, turns it to [[MultiplyInterval]];
   * 2. otherwise, stays the same.
   *
   * For [[Divide]]:
   * 1. If the left side is interval, turns it to [[DivideInterval]];
   * 2. otherwise, stays the same.
   */
  object ResolveBinaryArithmetic extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(BINARY_ARITHMETIC), ruleId) {
      case p: LogicalPlan => p.transformExpressionsUpWithPruning(
        _.containsPattern(BINARY_ARITHMETIC), ruleId) {
        case a @ Add(l, r, mode) if a.childrenResolved => (l.dataType, r.dataType) match {
          case (DateType, DayTimeIntervalType(DAY, DAY)) => DateAdd(l, ExtractANSIIntervalDays(r))
          case (DateType, _: DayTimeIntervalType) => TimeAdd(Cast(l, TimestampType), r)
          case (DayTimeIntervalType(DAY, DAY), DateType) => DateAdd(r, ExtractANSIIntervalDays(l))
          case (_: DayTimeIntervalType, DateType) => TimeAdd(Cast(r, TimestampType), l)
          case (DateType, _: YearMonthIntervalType) => DateAddYMInterval(l, r)
          case (_: YearMonthIntervalType, DateType) => DateAddYMInterval(r, l)
          case (TimestampType | TimestampNTZType, _: YearMonthIntervalType) =>
            TimestampAddYMInterval(l, r)
          case (_: YearMonthIntervalType, TimestampType | TimestampNTZType) =>
            TimestampAddYMInterval(r, l)
          case (CalendarIntervalType, CalendarIntervalType) |
               (_: DayTimeIntervalType, _: DayTimeIntervalType) => a
          case (_: NullType, _: AnsiIntervalType) =>
            a.copy(left = Cast(a.left, a.right.dataType))
          case (_: AnsiIntervalType, _: NullType) =>
            a.copy(right = Cast(a.right, a.left.dataType))
          case (DateType, CalendarIntervalType) =>
            DateAddInterval(l, r, ansiEnabled = mode == EvalMode.ANSI)
          case (_, CalendarIntervalType | _: DayTimeIntervalType) => Cast(TimeAdd(l, r), l.dataType)
          case (CalendarIntervalType, DateType) =>
            DateAddInterval(r, l, ansiEnabled = mode == EvalMode.ANSI)
          case (CalendarIntervalType | _: DayTimeIntervalType, _) => Cast(TimeAdd(r, l), r.dataType)
          case (DateType, dt) if dt != StringType => DateAdd(l, r)
          case (dt, DateType) if dt != StringType => DateAdd(r, l)
          case _ => a
        }
        case s @ Subtract(l, r, mode) if s.childrenResolved => (l.dataType, r.dataType) match {
          case (DateType, DayTimeIntervalType(DAY, DAY)) =>
            DateAdd(l, UnaryMinus(ExtractANSIIntervalDays(r), mode == EvalMode.ANSI))
          case (DateType, _: DayTimeIntervalType) =>
            DatetimeSub(l, r, TimeAdd(Cast(l, TimestampType), UnaryMinus(r, mode == EvalMode.ANSI)))
          case (DateType, _: YearMonthIntervalType) =>
            DatetimeSub(l, r, DateAddYMInterval(l, UnaryMinus(r, mode == EvalMode.ANSI)))
          case (TimestampType | TimestampNTZType, _: YearMonthIntervalType) =>
            DatetimeSub(l, r, TimestampAddYMInterval(l, UnaryMinus(r, mode == EvalMode.ANSI)))
          case (CalendarIntervalType, CalendarIntervalType) |
               (_: DayTimeIntervalType, _: DayTimeIntervalType) => s
          case (_: NullType, _: AnsiIntervalType) =>
            s.copy(left = Cast(s.left, s.right.dataType))
          case (_: AnsiIntervalType, _: NullType) =>
            s.copy(right = Cast(s.right, s.left.dataType))
          case (DateType, CalendarIntervalType) =>
            DatetimeSub(l, r, DateAddInterval(l,
              UnaryMinus(r, mode == EvalMode.ANSI), ansiEnabled = mode == EvalMode.ANSI))
          case (_, CalendarIntervalType | _: DayTimeIntervalType) =>
            Cast(DatetimeSub(l, r, TimeAdd(l, UnaryMinus(r, mode == EvalMode.ANSI))), l.dataType)
          case _ if AnyTimestampType.unapply(l) || AnyTimestampType.unapply(r) =>
            SubtractTimestamps(l, r)
          case (_, DateType) => SubtractDates(l, r)
          case (DateType, dt) if dt != StringType => DateSub(l, r)
          case _ => s
        }
        case m @ Multiply(l, r, mode) if m.childrenResolved => (l.dataType, r.dataType) match {
          case (CalendarIntervalType, _) => MultiplyInterval(l, r, mode == EvalMode.ANSI)
          case (_, CalendarIntervalType) => MultiplyInterval(r, l, mode == EvalMode.ANSI)
          case (_: YearMonthIntervalType, _) => MultiplyYMInterval(l, r)
          case (_, _: YearMonthIntervalType) => MultiplyYMInterval(r, l)
          case (_: DayTimeIntervalType, _) => MultiplyDTInterval(l, r)
          case (_, _: DayTimeIntervalType) => MultiplyDTInterval(r, l)
          case _ => m
        }
        case d @ Divide(l, r, mode) if d.childrenResolved => (l.dataType, r.dataType) match {
          case (CalendarIntervalType, _) => DivideInterval(l, r, mode == EvalMode.ANSI)
          case (_: YearMonthIntervalType, _) => DivideYMInterval(l, r)
          case (_: DayTimeIntervalType, _) => DivideDTInterval(l, r)
          case _ => d
        }
      }
    }
  }

  /**
   * Substitute child plan with WindowSpecDefinitions.
   */
  object WindowsSubstitution extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsAnyPattern(WITH_WINDOW_DEFINITION, UNRESOLVED_WINDOW_EXPRESSION), ruleId) {
      // Lookup WindowSpecDefinitions. This rule works with unresolved children.
      case WithWindowDefinition(windowDefinitions, child) => child.resolveExpressions {
        case UnresolvedWindowExpression(c, WindowSpecReference(windowName)) =>
          val windowSpecDefinition = windowDefinitions.getOrElse(windowName,
            throw QueryCompilationErrors.windowSpecificationNotDefinedError(windowName))
          WindowExpression(c, windowSpecDefinition)
      }
    }
  }

  /**
   * Replaces [[UnresolvedAlias]]s with concrete aliases.
   */
  object ResolveAliases extends Rule[LogicalPlan] {
    private def assignAliases(exprs: Seq[NamedExpression]) = {
      def extractOnly(e: Expression): Boolean = e match {
        case _: ExtractValue => e.children.forall(extractOnly)
        case _: Literal => true
        case _: Attribute => true
        case _ => false
      }
      def metaForAutoGeneratedAlias = {
        new MetadataBuilder()
          .putString("__autoGeneratedAlias", "true")
          .build()
      }
      exprs.map(_.transformUpWithPruning(_.containsPattern(UNRESOLVED_ALIAS)) {
          case u @ UnresolvedAlias(child, optGenAliasFunc) =>
          child match {
            case ne: NamedExpression => ne
            case go @ GeneratorOuter(g: Generator) if g.resolved => MultiAlias(go, Nil)
            case e if !e.resolved => u
            case g: Generator => MultiAlias(g, Nil)
            case c @ Cast(ne: NamedExpression, _, _, _) => Alias(c, ne.name)()
            case e: ExtractValue =>
              if (extractOnly(e)) {
                Alias(e, toPrettySQL(e))()
              } else {
                Alias(e, toPrettySQL(e))(explicitMetadata = Some(metaForAutoGeneratedAlias))
              }
            case e if optGenAliasFunc.isDefined =>
              Alias(child, optGenAliasFunc.get.apply(e))()
            case l: Literal => Alias(l, toPrettySQL(l))()
            case e =>
              Alias(e, toPrettySQL(e))(explicitMetadata = Some(metaForAutoGeneratedAlias))
          }
        }
      ).asInstanceOf[Seq[NamedExpression]]
    }

    private def hasUnresolvedAlias(exprs: Seq[NamedExpression]) =
      exprs.exists(_.exists(_.isInstanceOf[UnresolvedAlias]))

    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(UNRESOLVED_ALIAS), ruleId) {
      case Aggregate(groups, aggs, child) if child.resolved && hasUnresolvedAlias(aggs) =>
        Aggregate(groups, assignAliases(aggs), child)

      case Pivot(groupByOpt, pivotColumn, pivotValues, aggregates, child)
        if child.resolved && groupByOpt.isDefined && hasUnresolvedAlias(groupByOpt.get) =>
        Pivot(Some(assignAliases(groupByOpt.get)), pivotColumn, pivotValues, aggregates, child)

      case up: Unpivot if up.child.resolved &&
        (up.ids.exists(hasUnresolvedAlias) || up.values.exists(_.exists(hasUnresolvedAlias))) =>
        up.copy(ids = up.ids.map(assignAliases), values = up.values.map(_.map(assignAliases)))

      case Project(projectList, child) if child.resolved && hasUnresolvedAlias(projectList) =>
        Project(assignAliases(projectList), child)

      case c: CollectMetrics if c.child.resolved && hasUnresolvedAlias(c.metrics) =>
        c.copy(metrics = assignAliases(c.metrics))
    }
  }

  object ResolveGroupingAnalytics extends Rule[LogicalPlan] {
    private[analysis] def hasGroupingFunction(e: Expression): Boolean = {
      e.exists (g => g.isInstanceOf[Grouping] || g.isInstanceOf[GroupingID])
    }

    private def replaceGroupingFunc(
        expr: Expression,
        groupByExprs: Seq[Expression],
        gid: Expression): Expression = {
      expr transform {
        case e: GroupingID =>
          if (e.groupByExprs.isEmpty ||
              e.groupByExprs.map(_.canonicalized) == groupByExprs.map(_.canonicalized)) {
            Alias(gid, toPrettySQL(e))()
          } else {
            throw QueryCompilationErrors.groupingIDMismatchError(e, groupByExprs)
          }
        case e @ Grouping(col: Expression) =>
          val idx = groupByExprs.indexWhere(_.semanticEquals(col))
          if (idx >= 0) {
            Alias(Cast(BitwiseAnd(ShiftRight(gid, Literal(groupByExprs.length - 1 - idx)),
              Literal(1L)), ByteType), toPrettySQL(e))()
          } else {
            throw QueryCompilationErrors.groupingColInvalidError(col, groupByExprs)
          }
      }
    }

    /*
     * Create new alias for all group by expressions for `Expand` operator.
     */
    private def constructGroupByAlias(groupByExprs: Seq[Expression]): Seq[Alias] = {
      groupByExprs.map {
        case e: NamedExpression => Alias(e, e.name)(qualifier = e.qualifier)
        case other => Alias(other, other.toString)()
      }
    }

    /*
     * Construct [[Expand]] operator with grouping sets.
     */
    private def constructExpand(
        selectedGroupByExprs: Seq[Seq[Expression]],
        child: LogicalPlan,
        groupByAliases: Seq[Alias],
        gid: Attribute): LogicalPlan = {
      // Change the nullability of group by aliases if necessary. For example, if we have
      // GROUPING SETS ((a,b), a), we do not need to change the nullability of a, but we
      // should change the nullability of b to be TRUE.
      // TODO: For Cube/Rollup just set nullability to be `true`.
      val expandedAttributes = groupByAliases.map { alias =>
        if (selectedGroupByExprs.exists(!_.contains(alias.child))) {
          alias.toAttribute.withNullability(true)
        } else {
          alias.toAttribute
        }
      }

      val groupingSetsAttributes = selectedGroupByExprs.map { groupingSetExprs =>
        groupingSetExprs.map { expr =>
          val alias = groupByAliases.find(_.child.semanticEquals(expr)).getOrElse(
            throw QueryCompilationErrors.selectExprNotInGroupByError(expr, groupByAliases))
          // Map alias to expanded attribute.
          expandedAttributes.find(_.semanticEquals(alias.toAttribute)).getOrElse(
            alias.toAttribute)
        }
      }

      Expand(groupingSetsAttributes, groupByAliases, expandedAttributes, gid, child)
    }

    /*
     * Construct new aggregate expressions by replacing grouping functions.
     */
    private def constructAggregateExprs(
        groupByExprs: Seq[Expression],
        aggregations: Seq[NamedExpression],
        groupByAliases: Seq[Alias],
        groupingAttrs: Seq[Expression],
        gid: Attribute): Seq[NamedExpression] = aggregations.map { agg =>
      // collect all the found AggregateExpression, so we can check an expression is part of
      // any AggregateExpression or not.
      val aggsBuffer = ArrayBuffer[Expression]()
      // Returns whether the expression belongs to any expressions in `aggsBuffer` or not.
      def isPartOfAggregation(e: Expression): Boolean = {
        aggsBuffer.exists(a => a.exists(_ eq e))
      }
      replaceGroupingFunc(agg, groupByExprs, gid).transformDown {
        // AggregateExpression should be computed on the unmodified value of its argument
        // expressions, so we should not replace any references to grouping expression
        // inside it.
        case e: AggregateExpression =>
          aggsBuffer += e
          e
        case e if isPartOfAggregation(e) => e
        case e =>
          // Replace expression by expand output attribute.
          val index = groupByAliases.indexWhere(_.child.semanticEquals(e))
          if (index == -1) {
            e
          } else {
            groupingAttrs(index)
          }
      }.asInstanceOf[NamedExpression]
    }

    /*
     * Construct [[Aggregate]] operator from Cube/Rollup/GroupingSets.
     */
    private def constructAggregate(
        selectedGroupByExprs: Seq[Seq[Expression]],
        groupByExprs: Seq[Expression],
        aggregationExprs: Seq[NamedExpression],
        child: LogicalPlan): LogicalPlan = {

      if (groupByExprs.size > GroupingID.dataType.defaultSize * 8) {
        throw QueryCompilationErrors.groupingSizeTooLargeError(GroupingID.dataType.defaultSize * 8)
      }

      // Expand works by setting grouping expressions to null as determined by the
      // `selectedGroupByExprs`. To prevent these null values from being used in an aggregate
      // instead of the original value we need to create new aliases for all group by expressions
      // that will only be used for the intended purpose.
      val groupByAliases = constructGroupByAlias(groupByExprs)

      val gid = AttributeReference(VirtualColumn.groupingIdName, GroupingID.dataType, false)()
      val expand = constructExpand(selectedGroupByExprs, child, groupByAliases, gid)
      val groupingAttrs = expand.output.drop(child.output.length)

      val aggregations = constructAggregateExprs(
        groupByExprs, aggregationExprs, groupByAliases, groupingAttrs, gid)

      Aggregate(groupingAttrs, aggregations, expand)
    }

    private def findGroupingExprs(plan: LogicalPlan): Seq[Expression] = {
      plan.collectFirst {
        case a: Aggregate =>
          // this Aggregate should have grouping id as the last grouping key.
          val gid = a.groupingExpressions.last
          if (!gid.isInstanceOf[AttributeReference]
            || gid.asInstanceOf[AttributeReference].name != VirtualColumn.groupingIdName) {
            throw QueryCompilationErrors.groupingMustWithGroupingSetsOrCubeOrRollupError()
          }
          a.groupingExpressions.take(a.groupingExpressions.length - 1)
      }.getOrElse {
        throw QueryCompilationErrors.groupingMustWithGroupingSetsOrCubeOrRollupError()
      }
    }

    private def tryResolveHavingCondition(
        h: UnresolvedHaving,
        aggregate: Aggregate,
        selectedGroupByExprs: Seq[Seq[Expression]],
        groupByExprs: Seq[Expression]): LogicalPlan = {
      // For CUBE/ROLLUP expressions, to avoid resolving repeatedly, here we delete them from
      // groupingExpressions for condition resolving.
      val aggForResolving = aggregate.copy(groupingExpressions = groupByExprs)
      // Try resolving the condition of the filter as though it is in the aggregate clause
      val (extraAggExprs, Seq(resolvedHavingCond)) =
        ResolveAggregateFunctions.resolveExprsWithAggregate(Seq(h.havingCondition), aggForResolving)

      // Push the aggregate expressions into the aggregate (if any).
      val newChild = constructAggregate(selectedGroupByExprs, groupByExprs,
        aggregate.aggregateExpressions ++ extraAggExprs, aggregate.child)

      // Since the output exprId will be changed in the constructed aggregate, here we build an
      // attrMap to resolve the condition again.
      val attrMap = AttributeMap((aggForResolving.output ++ extraAggExprs.map(_.toAttribute))
        .zip(newChild.output))
      val newCond = resolvedHavingCond.transform {
        case a: AttributeReference => attrMap.getOrElse(a, a)
      }

      if (extraAggExprs.isEmpty) {
        Filter(newCond, newChild)
      } else {
        Project(newChild.output.dropRight(extraAggExprs.length),
          Filter(newCond, newChild))
      }
    }

    // This require transformDown to resolve having condition when generating aggregate node for
    // CUBE/ROLLUP/GROUPING SETS. This also replace grouping()/grouping_id() in resolved
    // Filter/Sort.
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsDownWithPruning(
      _.containsPattern(GROUPING_ANALYTICS), ruleId) {
      case h @ UnresolvedHaving(_, agg @ Aggregate(
        GroupingAnalytics(selectedGroupByExprs, groupByExprs), aggExprs, _))
        if agg.childrenResolved && aggExprs.forall(_.resolved) =>
        tryResolveHavingCondition(h, agg, selectedGroupByExprs, groupByExprs)

      case a if !a.childrenResolved => a // be sure all of the children are resolved.

      // Ensure group by expressions and aggregate expressions have been resolved.
      case Aggregate(GroupingAnalytics(selectedGroupByExprs, groupByExprs), aggExprs, child)
        if aggExprs.forall(_.resolved) =>
        constructAggregate(selectedGroupByExprs, groupByExprs, aggExprs, child)

      // We should make sure all expressions in condition have been resolved.
      case f @ Filter(cond, child) if hasGroupingFunction(cond) && cond.resolved =>
        val groupingExprs = findGroupingExprs(child)
        // The unresolved grouping id will be resolved by ResolveMissingReferences
        val newCond = replaceGroupingFunc(cond, groupingExprs, VirtualColumn.groupingIdAttribute)
        f.copy(condition = newCond)

      // We should make sure all [[SortOrder]]s have been resolved.
      case s @ Sort(order, _, child)
        if order.exists(hasGroupingFunction) && order.forall(_.resolved) =>
        val groupingExprs = findGroupingExprs(child)
        val gid = VirtualColumn.groupingIdAttribute
        // The unresolved grouping id will be resolved by ResolveMissingReferences
        val newOrder = order.map(replaceGroupingFunc(_, groupingExprs, gid).asInstanceOf[SortOrder])
        s.copy(order = newOrder)
    }
  }

  object ResolvePivot extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
      _.containsPattern(PIVOT), ruleId) {
      case p: Pivot if !p.childrenResolved || !p.aggregates.forall(_.resolved)
        || (p.groupByExprsOpt.isDefined && !p.groupByExprsOpt.get.forall(_.resolved))
        || !p.pivotColumn.resolved || !p.pivotValues.forall(_.resolved) => p
      case Pivot(groupByExprsOpt, pivotColumn, pivotValues, aggregates, child) =>
        if (!RowOrdering.isOrderable(pivotColumn.dataType)) {
          throw QueryCompilationErrors.unorderablePivotColError(pivotColumn)
        }
        // Check all aggregate expressions.
        aggregates.foreach(checkValidAggregateExpression)
        // Check all pivot values are literal and match pivot column data type.
        val evalPivotValues = pivotValues.map { value =>
          val foldable = trimAliases(value).foldable
          if (!foldable) {
            throw QueryCompilationErrors.nonLiteralPivotValError(value)
          }
          if (!Cast.canCast(value.dataType, pivotColumn.dataType)) {
            throw QueryCompilationErrors.pivotValDataTypeMismatchError(value, pivotColumn)
          }
          Cast(value, pivotColumn.dataType, Some(conf.sessionLocalTimeZone)).eval(EmptyRow)
        }
        // Group-by expressions coming from SQL are implicit and need to be deduced.
        val groupByExprs = groupByExprsOpt.getOrElse {
          val pivotColAndAggRefs = pivotColumn.references ++ AttributeSet(aggregates)
          child.output.filterNot(pivotColAndAggRefs.contains)
        }
        val singleAgg = aggregates.size == 1
        def outputName(value: Expression, aggregate: Expression): String = {
          val stringValue = value match {
            case n: NamedExpression => n.name
            case _ =>
              val utf8Value =
                Cast(value, StringType, Some(conf.sessionLocalTimeZone)).eval(EmptyRow)
              Option(utf8Value).map(_.toString).getOrElse("null")
          }
          if (singleAgg) {
            stringValue
          } else {
            val suffix = aggregate match {
              case n: NamedExpression => n.name
              case _ => toPrettySQL(aggregate)
            }
            stringValue + "_" + suffix
          }
        }
        if (aggregates.forall(a => PivotFirst.supportsDataType(a.dataType))) {
          // Since evaluating |pivotValues| if statements for each input row can get slow this is an
          // alternate plan that instead uses two steps of aggregation.
          val namedAggExps: Seq[NamedExpression] = aggregates.map(a => Alias(a, a.sql)())
          val namedPivotCol = pivotColumn match {
            case n: NamedExpression => n
            case _ => Alias(pivotColumn, "__pivot_col")()
          }
          val bigGroup = groupByExprs :+ namedPivotCol
          val firstAgg = Aggregate(bigGroup, bigGroup ++ namedAggExps, child)
          val pivotAggs = namedAggExps.map { a =>
            Alias(PivotFirst(namedPivotCol.toAttribute, a.toAttribute, evalPivotValues)
              .toAggregateExpression()
            , "__pivot_" + a.sql)()
          }
          val groupByExprsAttr = groupByExprs.map(_.toAttribute)
          val secondAgg = Aggregate(groupByExprsAttr, groupByExprsAttr ++ pivotAggs, firstAgg)
          val pivotAggAttribute = pivotAggs.map(_.toAttribute)
          val pivotOutputs = pivotValues.zipWithIndex.flatMap { case (value, i) =>
            aggregates.zip(pivotAggAttribute).map { case (aggregate, pivotAtt) =>
              Alias(ExtractValue(pivotAtt, Literal(i), resolver), outputName(value, aggregate))()
            }
          }
          Project(groupByExprsAttr ++ pivotOutputs, secondAgg)
        } else {
          val pivotAggregates: Seq[NamedExpression] = pivotValues.flatMap { value =>
            def ifExpr(e: Expression) = {
              If(
                EqualNullSafe(
                  pivotColumn,
                  Cast(value, pivotColumn.dataType, Some(conf.sessionLocalTimeZone))),
                e, Literal(null))
            }
            aggregates.map { aggregate =>
              val filteredAggregate = aggregate.transformDown {
                // Assumption is the aggregate function ignores nulls. This is true for all current
                // AggregateFunction's with the exception of First and Last in their default mode
                // (which we handle) and possibly some Hive UDAF's.
                case First(expr, _) =>
                  First(ifExpr(expr), true)
                case Last(expr, _) =>
                  Last(ifExpr(expr), true)
                case a: ApproximatePercentile =>
                  // ApproximatePercentile takes two literals for accuracy and percentage which
                  // should not be wrapped by if-else.
                  a.withNewChildren(ifExpr(a.first) :: a.second :: a.third :: Nil)
                case a: AggregateFunction =>
                  a.withNewChildren(a.children.map(ifExpr))
              }.transform {
                // We are duplicating aggregates that are now computing a different value for each
                // pivot value.
                // TODO: Don't construct the physical container until after analysis.
                case ae: AggregateExpression => ae.copy(resultId = NamedExpression.newExprId)
              }
              Alias(filteredAggregate, outputName(value, aggregate))()
            }
          }
          Aggregate(groupByExprs, groupByExprs ++ pivotAggregates, child)
        }
    }

    // Support any aggregate expression that can appear in an Aggregate plan except Pandas UDF.
    // TODO: Support Pandas UDF.
    private def checkValidAggregateExpression(expr: Expression): Unit = expr match {
      case _: AggregateExpression => // OK and leave the argument check to CheckAnalysis.
      case expr: PythonUDF if PythonUDF.isGroupedAggPandasUDF(expr) =>
        throw QueryCompilationErrors.pandasUDFAggregateNotSupportedInPivotError()
      case e: Attribute =>
        throw QueryCompilationErrors.aggregateExpressionRequiredForPivotError(e.sql)
      case e => e.children.foreach(checkValidAggregateExpression)
    }
  }

  object ResolveUnpivot extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
      _.containsPattern(UNPIVOT), ruleId) {

      // once children are resolved, we can determine values from ids and vice versa
      // if only either is given, and only AttributeReference are given
      case up @ Unpivot(Some(ids), None, _, _, _, _) if up.childrenResolved &&
        ids.forall(_.resolved) &&
        ids.forall(_.isInstanceOf[AttributeReference]) =>
        val idAttrs = AttributeSet(up.ids.get)
        val values = up.child.output.filterNot(idAttrs.contains)
        up.copy(values = Some(values.map(Seq(_))))
      case up @ Unpivot(None, Some(values), _, _, _, _) if up.childrenResolved &&
        values.forall(_.forall(_.resolved)) &&
        values.forall(_.forall(_.isInstanceOf[AttributeReference])) =>
        val valueAttrs = AttributeSet(up.values.get.flatten)
        val ids = up.child.output.filterNot(valueAttrs.contains)
        up.copy(ids = Some(ids))

      case up: Unpivot if !up.childrenResolved || !up.ids.exists(_.forall(_.resolved)) ||
        !up.values.exists(_.nonEmpty) || !up.values.exists(_.forall(_.forall(_.resolved))) ||
        !up.values.get.forall(_.length == up.valueColumnNames.length) ||
        !up.valuesTypeCoercioned => up

      // TypeCoercionBase.UnpivotCoercion determines valueType
      // and casts values once values are set and resolved
      case Unpivot(Some(ids), Some(values), aliases, variableColumnName, valueColumnNames, child) =>

        def toString(values: Seq[NamedExpression]): String =
          values.map(v => v.name).mkString("_")

        // construct unpivot expressions for Expand
        val exprs: Seq[Seq[Expression]] =
          values.zip(aliases.getOrElse(values.map(_ => None))).map {
            case (vals, Some(alias)) => (ids :+ Literal(alias)) ++ vals
            case (Seq(value), None) => (ids :+ Literal(value.name)) :+ value
            // there are more than one value in vals
            case (vals, None) => (ids :+ Literal(toString(vals))) ++ vals
          }

        // construct output attributes
        val variableAttr = AttributeReference(variableColumnName, StringType, nullable = false)()
        val valueAttrs = valueColumnNames.zipWithIndex.map {
          case (valueColumnName, idx) =>
            AttributeReference(
              valueColumnName,
              values.head(idx).dataType,
              values.map(_(idx)).exists(_.nullable))()
        }
        val output = (ids.map(_.toAttribute) :+ variableAttr) ++ valueAttrs

        // expand the unpivot expressions
        Expand(exprs, output, child)
    }
  }

  private def isResolvingView: Boolean = AnalysisContext.get.catalogAndNamespace.nonEmpty
  private def isReferredTempViewName(nameParts: Seq[String]): Boolean = {
    AnalysisContext.get.referredTempViewNames.exists { n =>
      (n.length == nameParts.length) && n.zip(nameParts).forall {
        case (a, b) => resolver(a, b)
      }
    }
  }

  // If we are resolving database objects (relations, functions, etc.) insides views, we may need to
  // expand single or multi-part identifiers with the current catalog and namespace of when the
  // view was created.
  private def expandIdentifier(nameParts: Seq[String]): Seq[String] = {
    if (!isResolvingView || isReferredTempViewName(nameParts)) return nameParts

    if (nameParts.length == 1) {
      AnalysisContext.get.catalogAndNamespace :+ nameParts.head
    } else if (catalogManager.isCatalogRegistered(nameParts.head)) {
      nameParts
    } else {
      AnalysisContext.get.catalogAndNamespace.head +: nameParts
    }
  }

  /**
   * Adds metadata columns to output for child relations when nodes are missing resolved attributes.
   *
   * References to metadata columns are resolved using columns from [[LogicalPlan.metadataOutput]],
   * but the relation's output does not include the metadata columns until the relation is replaced.
   * Unless this rule adds metadata to the relation's output, the analyzer will detect that nothing
   * produces the columns.
   *
   * This rule only adds metadata columns when a node is resolved but is missing input from its
   * children. This ensures that metadata columns are not added to the plan unless they are used. By
   * checking only resolved nodes, this ensures that * expansion is already done so that metadata
   * columns are not accidentally selected by *. This rule resolves operators downwards to avoid
   * projecting away metadata columns prematurely.
   */
  object AddMetadataColumns extends Rule[LogicalPlan] {

    import org.apache.spark.sql.catalyst.util._

    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsDownWithPruning(
      AlwaysProcess.fn, ruleId) {
      // Add metadata output to all node types
      case node if node.children.nonEmpty && node.resolved && hasMetadataCol(node) =>
        val inputAttrs = AttributeSet(node.children.flatMap(_.output))
        val metaCols = getMetadataAttributes(node).filterNot(inputAttrs.contains)
        if (metaCols.isEmpty) {
          node
        } else {
          val newNode = addMetadataCol(node)
          // We should not change the output schema of the plan. We should project away the extra
          // metadata columns if necessary.
          if (newNode.sameOutput(node)) {
            newNode
          } else {
            Project(node.output, newNode)
          }
        }
    }

    private def getMetadataAttributes(plan: LogicalPlan): Seq[Attribute] = {
      plan.expressions.flatMap(_.collect {
        case a: Attribute if a.isMetadataCol => a
        case a: Attribute
          if plan.children.exists(c => c.metadataOutput.exists(_.exprId == a.exprId)) =>
          plan.children.collectFirst {
            case c if c.metadataOutput.exists(_.exprId == a.exprId) =>
              c.metadataOutput.find(_.exprId == a.exprId).get
          }.get
      })
    }

    private def hasMetadataCol(plan: LogicalPlan): Boolean = {
      plan.expressions.exists(_.exists {
        case a: Attribute =>
          // If an attribute is resolved before being labeled as metadata
          // (i.e. from the originating Dataset), we check with expression ID
          a.isMetadataCol ||
            plan.children.exists(c => c.metadataOutput.exists(_.exprId == a.exprId))
        case _ => false
      })
    }

    private def addMetadataCol(plan: LogicalPlan): LogicalPlan = plan match {
      case s: ExposesMetadataColumns => s.withMetadataColumns()
      case p: Project =>
        val newProj = p.copy(
          projectList = p.metadataOutput ++ p.projectList,
          child = addMetadataCol(p.child))
        newProj.copyTagsFrom(p)
        newProj
      case _ => plan.withNewChildren(plan.children.map(addMetadataCol))
    }
  }

  /**
   * Replaces unresolved relations (tables and views) with concrete relations from the catalog.
   */
  object ResolveRelations extends Rule[LogicalPlan] {
    // The current catalog and namespace may be different from when the view was created, we must
    // resolve the view logical plan here, with the catalog and namespace stored in view metadata.
    // This is done by keeping the catalog and namespace in `AnalysisContext`, and analyzer will
    // look at `AnalysisContext.catalogAndNamespace` when resolving relations with single-part name.
    // If `AnalysisContext.catalogAndNamespace` is non-empty, analyzer will expand single-part names
    // with it, instead of current catalog and namespace.
    private def resolveViews(plan: LogicalPlan): LogicalPlan = plan match {
      // The view's child should be a logical plan parsed from the `desc.viewText`, the variable
      // `viewText` should be defined, or else we throw an error on the generation of the View
      // operator.
      case view @ View(desc, isTempView, child) if !child.resolved =>
        // Resolve all the UnresolvedRelations and Views in the child.
        val newChild = AnalysisContext.withAnalysisContext(desc) {
          val nestedViewDepth = AnalysisContext.get.nestedViewDepth
          val maxNestedViewDepth = AnalysisContext.get.maxNestedViewDepth
          if (nestedViewDepth > maxNestedViewDepth) {
            throw QueryCompilationErrors.viewDepthExceedsMaxResolutionDepthError(
              desc.identifier, maxNestedViewDepth, view)
          }
          SQLConf.withExistingConf(View.effectiveSQLConf(desc.viewSQLConfigs, isTempView)) {
            executeSameContext(child)
          }
        }
        // Fail the analysis eagerly because outside AnalysisContext, the unresolved operators
        // inside a view maybe resolved incorrectly.
        checkAnalysis(newChild)
        view.copy(child = newChild)
      case p @ SubqueryAlias(_, view: View) =>
        p.copy(child = resolveViews(view))
      case _ => plan
    }

    private def unwrapRelationPlan(plan: LogicalPlan): LogicalPlan = {
      EliminateSubqueryAliases(plan) match {
        case v: View if v.isTempViewStoringAnalyzedPlan => v.child
        case other => other
      }
    }

    def apply(plan: LogicalPlan)
        : LogicalPlan = plan.resolveOperatorsUpWithPruning(AlwaysProcess.fn, ruleId) {
      case i @ InsertIntoStatement(table, _, _, _, _, _) if i.query.resolved =>
        val relation = table match {
          case u: UnresolvedRelation if !u.isStreaming =>
            resolveRelation(u).getOrElse(u)
          case other => other
        }

        // Inserting into a file-based temporary view is allowed.
        // (e.g., spark.read.parquet("path").createOrReplaceTempView("t").
        // Thus, we need to look at the raw plan if `relation` is a temporary view.
        unwrapRelationPlan(relation) match {
          case v: View =>
            throw QueryCompilationErrors.insertIntoViewNotAllowedError(v.desc.identifier, table)
          case other => i.copy(table = other)
        }

      // TODO (SPARK-27484): handle streaming write commands when we have them.
      case write: V2WriteCommand =>
        write.table match {
          case u: UnresolvedRelation if !u.isStreaming =>
            resolveRelation(u).map(unwrapRelationPlan).map {
              case v: View => throw QueryCompilationErrors.writeIntoViewNotAllowedError(
                v.desc.identifier, write)
              case r: DataSourceV2Relation => write.withNewTable(r)
              case u: UnresolvedCatalogRelation =>
                throw QueryCompilationErrors.writeIntoV1TableNotAllowedError(
                  u.tableMeta.identifier, write)
              case other =>
                throw QueryCompilationErrors.writeIntoTempViewNotAllowedError(
                  u.multipartIdentifier.quoted)
            }.getOrElse(write)
          case _ => write
        }

      case u: UnresolvedRelation =>
        resolveRelation(u).map(resolveViews).getOrElse(u)

      case r @ RelationTimeTravel(u: UnresolvedRelation, timestamp, version)
          if timestamp.forall(ts => ts.resolved && !SubqueryExpression.hasSubquery(ts)) =>
        resolveRelation(u, TimeTravelSpec.create(timestamp, version, conf)).getOrElse(r)

      case u @ UnresolvedTable(identifier, cmd, relationTypeMismatchHint) =>
        lookupTableOrView(identifier).map {
          case v: ResolvedPersistentView =>
            val nameParts = v.catalog.name() +: v.identifier.asMultipartIdentifier
            throw QueryCompilationErrors.expectTableNotViewError(
              nameParts, isTemp = false, cmd, relationTypeMismatchHint, u)
          case _: ResolvedTempView =>
            throw QueryCompilationErrors.expectTableNotViewError(
              identifier, isTemp = true, cmd, relationTypeMismatchHint, u)
          case table => table
        }.getOrElse(u)

      case u @ UnresolvedView(identifier, cmd, allowTemp, relationTypeMismatchHint) =>
        lookupTableOrView(identifier, viewOnly = true).map {
          case _: ResolvedTempView if !allowTemp =>
            throw QueryCompilationErrors.expectViewNotTempViewError(identifier, cmd, u)
          case t: ResolvedTable =>
            throw QueryCompilationErrors.expectViewNotTableError(
              t, cmd, relationTypeMismatchHint, u)
          case other => other
        }.getOrElse(u)

      case u @ UnresolvedTableOrView(identifier, cmd, allowTempView) =>
        lookupTableOrView(identifier).map {
          case _: ResolvedTempView if !allowTempView =>
            throw QueryCompilationErrors.expectTableOrPermanentViewNotTempViewError(
              identifier, cmd, u)
          case other => other
        }.getOrElse(u)
    }

    private def lookupTempView(identifier: Seq[String]): Option[TemporaryViewRelation] = {
      // We are resolving a view and this name is not a temp view when that view was created. We
      // return None earlier here.
      if (isResolvingView && !isReferredTempViewName(identifier)) return None
      v1SessionCatalog.getRawLocalOrGlobalTempView(identifier)
    }

    private def resolveTempView(
        identifier: Seq[String],
        isStreaming: Boolean = false,
        isTimeTravel: Boolean = false): Option[LogicalPlan] = {
      lookupTempView(identifier).map { v =>
        val tempViewPlan = v1SessionCatalog.getTempViewRelation(v)
        if (isStreaming && !tempViewPlan.isStreaming) {
          throw QueryCompilationErrors.readNonStreamingTempViewError(identifier.quoted)
        }
        if (isTimeTravel) {
          val target = if (tempViewPlan.isStreaming) "streams" else "views"
          throw QueryCompilationErrors.timeTravelUnsupportedError(target)
        }
        tempViewPlan
      }
    }

    /**
     * Resolves relations to `ResolvedTable` or `Resolved[Temp/Persistent]View`. This is
     * for resolving DDL and misc commands.
     */
    private def lookupTableOrView(
        identifier: Seq[String],
        viewOnly: Boolean = false): Option[LogicalPlan] = {
      lookupTempView(identifier).map { tempView =>
        ResolvedTempView(identifier.asIdentifier, tempView.tableMeta.schema)
      }.orElse {
        expandIdentifier(identifier) match {
          case CatalogAndIdentifier(catalog, ident) =>
            if (viewOnly && !CatalogV2Util.isSessionCatalog(catalog)) {
              throw QueryCompilationErrors.catalogOperationNotSupported(catalog, "views")
            }
            CatalogV2Util.loadTable(catalog, ident).map {
              case v1Table: V1Table if CatalogV2Util.isSessionCatalog(catalog) &&
                v1Table.v1Table.tableType == CatalogTableType.VIEW =>
                val v1Ident = v1Table.catalogTable.identifier
                val v2Ident = Identifier.of(v1Ident.database.toArray, v1Ident.identifier)
                ResolvedPersistentView(catalog, v2Ident, v1Table.catalogTable.schema)
              case table =>
                ResolvedTable.create(catalog.asTableCatalog, ident, table)
            }
          case _ => None
        }
      }
    }

    private def createRelation(
        catalog: CatalogPlugin,
        ident: Identifier,
        table: Option[Table],
        options: CaseInsensitiveStringMap,
        isStreaming: Boolean): Option[LogicalPlan] = {
      table.map {
        case v1Table: V1Table if CatalogV2Util.isSessionCatalog(catalog) =>
          if (isStreaming) {
            if (v1Table.v1Table.tableType == CatalogTableType.VIEW) {
              throw QueryCompilationErrors.permanentViewNotSupportedByStreamingReadingAPIError(
                ident.quoted)
            }
            SubqueryAlias(
              catalog.name +: ident.asMultipartIdentifier,
              UnresolvedCatalogRelation(v1Table.v1Table, options, isStreaming = true))
          } else {
            v1SessionCatalog.getRelation(v1Table.v1Table, options)
          }

        case table =>
          if (isStreaming) {
            val v1Fallback = table match {
              case withFallback: V2TableWithV1Fallback =>
                Some(UnresolvedCatalogRelation(withFallback.v1Table, isStreaming = true))
              case _ => None
            }
            SubqueryAlias(
              catalog.name +: ident.asMultipartIdentifier,
              StreamingRelationV2(None, table.name, table, options, table.schema.toAttributes,
                Some(catalog), Some(ident), v1Fallback))
          } else {
            SubqueryAlias(
              catalog.name +: ident.asMultipartIdentifier,
              DataSourceV2Relation.create(table, Some(catalog), Some(ident), options))
          }
      }
    }

    /**
     * Resolves relations to v1 relation if it's a v1 table from the session catalog, or to v2
     * relation. This is for resolving DML commands and SELECT queries.
     */
    private def resolveRelation(
        u: UnresolvedRelation,
        timeTravelSpec: Option[TimeTravelSpec] = None): Option[LogicalPlan] = {
      resolveTempView(u.multipartIdentifier, u.isStreaming, timeTravelSpec.isDefined).orElse {
        expandIdentifier(u.multipartIdentifier) match {
          case CatalogAndIdentifier(catalog, ident) =>
            val key = catalog.name +: ident.namespace :+ ident.name
            AnalysisContext.get.relationCache.get(key).map(_.transform {
              case multi: MultiInstanceRelation =>
                val newRelation = multi.newInstance()
                newRelation.copyTagsFrom(multi)
                newRelation
            }).orElse {
              val table = CatalogV2Util.loadTable(catalog, ident, timeTravelSpec)
              val loaded = createRelation(catalog, ident, table, u.options, u.isStreaming)
              loaded.foreach(AnalysisContext.get.relationCache.update(key, _))
              loaded
            }
          case _ => None
        }
      }
    }
  }

  object ResolveInsertInto extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
      AlwaysProcess.fn, ruleId) {
      case i @ InsertIntoStatement(r: DataSourceV2Relation, _, _, _, _, _)
          if i.query.resolved && i.userSpecifiedCols.isEmpty =>
        // ifPartitionNotExists is append with validation, but validation is not supported
        if (i.ifPartitionNotExists) {
          throw QueryCompilationErrors.unsupportedIfNotExistsError(r.table.name)
        }

        val partCols = partitionColumnNames(r.table)
        validatePartitionSpec(partCols, i.partitionSpec)

        val staticPartitions = i.partitionSpec.filter(_._2.isDefined).mapValues(_.get).toMap
        val query = addStaticPartitionColumns(r, i.query, staticPartitions)

        if (!i.overwrite) {
          AppendData.byPosition(r, query)
        } else if (conf.partitionOverwriteMode == PartitionOverwriteMode.DYNAMIC) {
          OverwritePartitionsDynamic.byPosition(r, query)
        } else {
          OverwriteByExpression.byPosition(r, query, staticDeleteExpression(r, staticPartitions))
        }
    }

    private def partitionColumnNames(table: Table): Seq[String] = {
      // get partition column names. in v2, partition columns are columns that are stored using an
      // identity partition transform because the partition values and the column values are
      // identical. otherwise, partition values are produced by transforming one or more source
      // columns and cannot be set directly in a query's PARTITION clause.
      table.partitioning.flatMap {
        case IdentityTransform(FieldReference(Seq(name))) => Some(name)
        case _ => None
      }
    }

    private def validatePartitionSpec(
        partitionColumnNames: Seq[String],
        partitionSpec: Map[String, Option[String]]): Unit = {
      // check that each partition name is a partition column. otherwise, it is not valid
      partitionSpec.keySet.foreach { partitionName =>
        partitionColumnNames.find(name => conf.resolver(name, partitionName)) match {
          case Some(_) =>
          case None =>
            throw QueryCompilationErrors.nonPartitionColError(partitionName)
        }
      }
    }

    private def addStaticPartitionColumns(
        relation: DataSourceV2Relation,
        query: LogicalPlan,
        staticPartitions: Map[String, String]): LogicalPlan = {

      if (staticPartitions.isEmpty) {
        query

      } else {
        // add any static value as a literal column
        val withStaticPartitionValues = {
          // for each static name, find the column name it will replace and check for unknowns.
          val outputNameToStaticName = staticPartitions.keySet.map(staticName =>
            relation.output.find(col => conf.resolver(col.name, staticName)) match {
              case Some(attr) =>
                attr.name -> staticName
              case _ =>
                throw QueryCompilationErrors.missingStaticPartitionColumn(staticName)
            }).toMap

          val queryColumns = query.output.iterator

          // for each output column, add the static value as a literal, or use the next input
          // column. this does not fail if input columns are exhausted and adds remaining columns
          // at the end. both cases will be caught by ResolveOutputRelation and will fail the
          // query with a helpful error message.
          relation.output.flatMap { col =>
            outputNameToStaticName.get(col.name).flatMap(staticPartitions.get) match {
              case Some(staticValue) =>
                // SPARK-30844: try our best to follow StoreAssignmentPolicy for static partition
                // values but not completely follow because we can't do static type checking due to
                // the reason that the parser has erased the type info of static partition values
                // and converted them to string.
                val cast = Cast(Literal(staticValue), col.dataType, ansiEnabled = true)
                cast.setTagValue(Cast.BY_TABLE_INSERTION, ())
                Some(Alias(cast, col.name)())
              case _ if queryColumns.hasNext =>
                Some(queryColumns.next)
              case _ =>
                None
            }
          } ++ queryColumns
        }

        Project(withStaticPartitionValues, query)
      }
    }

    private def staticDeleteExpression(
        relation: DataSourceV2Relation,
        staticPartitions: Map[String, String]): Expression = {
      if (staticPartitions.isEmpty) {
        Literal(true)
      } else {
        staticPartitions.map { case (name, value) =>
          relation.output.find(col => conf.resolver(col.name, name)) match {
            case Some(attr) =>
              // the delete expression must reference the table's column names, but these attributes
              // are not available when CheckAnalysis runs because the relation is not a child of
              // the logical operation. instead, expressions are resolved after
              // ResolveOutputRelation runs, using the query's column names that will match the
              // table names at that point. because resolution happens after a future rule, create
              // an UnresolvedAttribute.
              EqualNullSafe(
                UnresolvedAttribute.quoted(attr.name),
                Cast(Literal(value), attr.dataType))
            case None =>
              throw QueryCompilationErrors.missingStaticPartitionColumn(name)
          }
        }.reduce(And)
      }
    }
  }

  /**
   * Replaces [[UnresolvedAttribute]]s with concrete [[AttributeReference]]s from
   * a logical plan node's children.
   */
  object ResolveReferences extends Rule[LogicalPlan] {

    /** Return true if there're conflicting attributes among children's outputs of a plan */
    def hasConflictingAttrs(p: LogicalPlan): Boolean = {
      p.children.length > 1 && {
        // Note that duplicated attributes are allowed within a single node,
        // e.g., df.select($"a", $"a"), so we should only check conflicting
        // attributes between nodes.
        val uniqueAttrs = mutable.HashSet[ExprId]()
        p.children.head.outputSet.foreach(a => uniqueAttrs.add(a.exprId))
        p.children.tail.exists { child =>
          val uniqueSize = uniqueAttrs.size
          val childSize = child.outputSet.size
          child.outputSet.foreach(a => uniqueAttrs.add(a.exprId))
          uniqueSize + childSize > uniqueAttrs.size
        }
      }
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      AlwaysProcess.fn, ruleId) {
      case p: LogicalPlan if !p.childrenResolved => p

      // Wait for the rule `DeduplicateRelations` to resolve conflicting attrs first.
      case p: LogicalPlan if hasConflictingAttrs(p) => p

      // If the projection list contains Stars, expand it.
      case p: Project if containsStar(p.projectList) =>
        p.copy(projectList = buildExpandedProjectList(p.projectList, p.child))
      // If the aggregate function argument contains Stars, expand it.
      case a: Aggregate if containsStar(a.aggregateExpressions) =>
        if (a.groupingExpressions.exists(_.isInstanceOf[UnresolvedOrdinal])) {
          throw QueryCompilationErrors.starNotAllowedWhenGroupByOrdinalPositionUsedError()
        } else {
          a.copy(aggregateExpressions = buildExpandedProjectList(a.aggregateExpressions, a.child))
        }
      case g: Generate if containsStar(g.generator.children) =>
        throw QueryCompilationErrors.invalidStarUsageError("explode/json_tuple/UDTF",
          extractStar(g.generator.children))
      // If the Unpivot ids or values contain Stars, expand them.
      case up: Unpivot if up.ids.exists(containsStar) ||
        // Only expand Stars in one-dimensional values
        up.values.exists(values => values.exists(_.length == 1) && values.exists(containsStar)) =>
        up.copy(
          ids = up.ids.map(buildExpandedProjectList(_, up.child)),
          // The inner exprs in Option[[exprs] is one-dimensional, e.g. Optional[[["*"]]].
          // The single NamedExpression turns into multiple, which we here have to turn into
          // Optional[[["col1"], ["col2"]]]
          values = up.values.map(_.flatMap(buildExpandedProjectList(_, up.child)).map(Seq(_)))
        )

      case u @ Union(children, _, _)
        // if there are duplicate output columns, give them unique expr ids
          if children.exists(c => c.output.map(_.exprId).distinct.length < c.output.length) =>
        val newChildren = children.map { c =>
          if (c.output.map(_.exprId).distinct.length < c.output.length) {
            val existingExprIds = mutable.HashSet[ExprId]()
            val projectList = c.output.map { attr =>
              if (existingExprIds.contains(attr.exprId)) {
                // replace non-first duplicates with aliases and tag them
                val newMetadata = new MetadataBuilder().withMetadata(attr.metadata)
                  .putNull("__is_duplicate").build()
                Alias(attr, attr.name)(explicitMetadata = Some(newMetadata))
              } else {
                // leave first duplicate alone
                existingExprIds.add(attr.exprId)
                attr
              }
            }
            Project(projectList, c)
          } else {
            c
          }
        }
        u.withNewChildren(newChildren)

      // When resolve `SortOrder`s in Sort based on child, don't report errors as
      // we still have chance to resolve it based on its descendants
      case s @ Sort(ordering, global, child) if child.resolved && !s.resolved =>
        val newOrdering =
          ordering.map(order => resolveExpressionByPlanOutput(order, child).asInstanceOf[SortOrder])
        Sort(newOrdering, global, child)

      // A special case for Generate, because the output of Generate should not be resolved by
      // ResolveReferences. Attributes in the output will be resolved by ResolveGenerate.
      case g @ Generate(generator, _, _, _, _, _) if generator.resolved => g

      case g @ Generate(generator, join, outer, qualifier, output, child) =>
        val newG = resolveExpressionByPlanOutput(generator, child, throws = true)
        if (newG.fastEquals(generator)) {
          g
        } else {
          Generate(newG.asInstanceOf[Generator], join, outer, qualifier, output, child)
        }

      // Skips plan which contains deserializer expressions, as they should be resolved by another
      // rule: ResolveDeserializer.
      case plan if containsDeserializer(plan.expressions) => plan

      // SPARK-31670: Resolve Struct field in groupByExpressions and aggregateExpressions
      // with CUBE/ROLLUP will be wrapped with alias like Alias(GetStructField, name) with
      // different ExprId. This cause aggregateExpressions can't be replaced by expanded
      // groupByExpressions in `ResolveGroupingAnalytics.constructAggregateExprs()`, we trim
      // unnecessary alias of GetStructField here.
      case a: Aggregate =>
        val planForResolve = a.child match {
          // SPARK-25942: Resolves aggregate expressions with `AppendColumns`'s children, instead of
          // `AppendColumns`, because `AppendColumns`'s serializer might produce conflict attribute
          // names leading to ambiguous references exception.
          case appendColumns: AppendColumns => appendColumns
          case _ => a
        }

        val resolvedGroupingExprs = a.groupingExpressions
          .map(resolveExpressionByPlanChildren(_, planForResolve))
          .map(trimTopLevelGetStructFieldAlias)

        val resolvedAggExprs = a.aggregateExpressions
          .map(resolveExpressionByPlanChildren(_, planForResolve))
            .map(_.asInstanceOf[NamedExpression])

        a.copy(resolvedGroupingExprs, resolvedAggExprs, a.child)

      case o: OverwriteByExpression if o.table.resolved =>
        // The delete condition of `OverwriteByExpression` will be passed to the table
        // implementation and should be resolved based on the table schema.
        o.copy(deleteExpr = resolveExpressionByPlanOutput(o.deleteExpr, o.table))

      case m @ MergeIntoTable(targetTable, sourceTable, _, _, _)
        if !m.resolved && targetTable.resolved && sourceTable.resolved =>

        EliminateSubqueryAliases(targetTable) match {
          case r: NamedRelation if r.skipSchemaResolution =>
            // Do not resolve the expression if the target table accepts any schema.
            // This allows data sources to customize their own resolution logic using
            // custom resolution rules.
            m

          case _ =>
            val newMatchedActions = m.matchedActions.map {
              case DeleteAction(deleteCondition) =>
                val resolvedDeleteCondition = deleteCondition.map(
                  resolveExpressionByPlanChildren(_, m))
                DeleteAction(resolvedDeleteCondition)
              case UpdateAction(updateCondition, assignments) =>
                val resolvedUpdateCondition = updateCondition.map(
                  resolveExpressionByPlanChildren(_, m))
                UpdateAction(
                  resolvedUpdateCondition,
                  // The update value can access columns from both target and source tables.
                  resolveAssignments(assignments, m, resolveValuesWithSourceOnly = false))
              case UpdateStarAction(updateCondition) =>
                val assignments = targetTable.output.map { attr =>
                  Assignment(attr, UnresolvedAttribute(Seq(attr.name)))
                }
                UpdateAction(
                  updateCondition.map(resolveExpressionByPlanChildren(_, m)),
                  // For UPDATE *, the value must from source table.
                  resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true))
              case o => o
            }
            val newNotMatchedActions = m.notMatchedActions.map {
              case InsertAction(insertCondition, assignments) =>
                // The insert action is used when not matched, so its condition and value can only
                // access columns from the source table.
                val resolvedInsertCondition = insertCondition.map(
                  resolveExpressionByPlanChildren(_, Project(Nil, m.sourceTable)))
                InsertAction(
                  resolvedInsertCondition,
                  resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true))
              case InsertStarAction(insertCondition) =>
                // The insert action is used when not matched, so its condition and value can only
                // access columns from the source table.
                val resolvedInsertCondition = insertCondition.map(
                  resolveExpressionByPlanChildren(_, Project(Nil, m.sourceTable)))
                val assignments = targetTable.output.map { attr =>
                  Assignment(attr, UnresolvedAttribute(Seq(attr.name)))
                }
                InsertAction(
                  resolvedInsertCondition,
                  resolveAssignments(assignments, m, resolveValuesWithSourceOnly = true))
              case o => o
            }
            val resolvedMergeCondition = resolveExpressionByPlanChildren(m.mergeCondition, m)
            m.copy(mergeCondition = resolvedMergeCondition,
              matchedActions = newMatchedActions,
              notMatchedActions = newNotMatchedActions)
        }

      // Skip the having clause here, this will be handled in ResolveAggregateFunctions.
      case h: UnresolvedHaving => h

      case q: LogicalPlan =>
        logTrace(s"Attempting to resolve ${q.simpleString(conf.maxToStringFields)}")
        q.mapExpressions(resolveExpressionByPlanChildren(_, q))
    }

    def resolveAssignments(
        assignments: Seq[Assignment],
        mergeInto: MergeIntoTable,
        resolveValuesWithSourceOnly: Boolean): Seq[Assignment] = {
      assignments.map { assign =>
        val resolvedKey = assign.key match {
          case c if !c.resolved =>
            resolveMergeExprOrFail(c, Project(Nil, mergeInto.targetTable))
          case o => o
        }
        val resolvedValue = assign.value match {
          // The update values may contain target and/or source references.
          case c if !c.resolved =>
            if (resolveValuesWithSourceOnly) {
              resolveMergeExprOrFail(c, Project(Nil, mergeInto.sourceTable))
            } else {
              resolveMergeExprOrFail(c, mergeInto)
            }
          case o => o
        }
        Assignment(resolvedKey, resolvedValue)
      }
    }

    private def resolveMergeExprOrFail(e: Expression, p: LogicalPlan): Expression = {
      val resolved = resolveExpressionByPlanChildren(e, p)
      resolved.references.filter { attribute: Attribute =>
        !attribute.resolved &&
          // We exclude attribute references named "DEFAULT" from consideration since they are
          // handled exclusively by the ResolveDefaultColumns analysis rule. That rule checks the
          // MERGE command for such references and either replaces each one with a corresponding
          // value, or returns a custom error message.
          normalizeFieldName(attribute.name) != normalizeFieldName(CURRENT_DEFAULT_COLUMN_NAME)
      }.foreach { a =>
        // Note: This will throw error only on unresolved attribute issues,
        // not other resolution errors like mismatched data types.
        val cols = p.inputSet.toSeq.map(_.sql).mkString(", ")
        a.failAnalysis(s"cannot resolve ${a.sql} in MERGE command given columns [$cols]")
      }
      resolved
    }

    // This method is used to trim groupByExpressions/selectedGroupByExpressions's top-level
    // GetStructField Alias. Since these expression are not NamedExpression originally,
    // we are safe to trim top-level GetStructField Alias.
    def trimTopLevelGetStructFieldAlias(e: Expression): Expression = {
      e match {
        case Alias(s: GetStructField, _) => s
        case other => other
      }
    }

    // Expand the star expression using the input plan first. If failed, try resolve
    // the star expression using the outer query plan and wrap the resolved attributes
    // in outer references. Otherwise throw the original exception.
    private def expand(s: Star, plan: LogicalPlan): Seq[NamedExpression] = {
      withPosition(s) {
        try {
          s.expand(plan, resolver)
        } catch {
          case e: AnalysisException =>
            AnalysisContext.get.outerPlan.map {
              // Only Project and Aggregate can host star expressions.
              case u @ (_: Project | _: Aggregate) =>
                Try(s.expand(u.children.head, resolver)) match {
                  case Success(expanded) => expanded.map(wrapOuterReference)
                  case Failure(_) => throw e
                }
              // Do not use the outer plan to resolve the star expression
              // since the star usage is invalid.
              case _ => throw e
            }.getOrElse { throw e }
        }
      }
    }

    /**
     * Build a project list for Project/Aggregate and expand the star if possible
     */
    private def buildExpandedProjectList(
      exprs: Seq[NamedExpression],
      child: LogicalPlan): Seq[NamedExpression] = {
      exprs.flatMap {
        // Using Dataframe/Dataset API: testData2.groupBy($"a", $"b").agg($"*")
        case s: Star => expand(s, child)
        // Using SQL API without running ResolveAlias: SELECT * FROM testData2 group by a, b
        case UnresolvedAlias(s: Star, _) => expand(s, child)
        case o if containsStar(o :: Nil) => expandStarExpression(o, child) :: Nil
        case o => o :: Nil
      }.map(_.asInstanceOf[NamedExpression])
    }

    /**
     * Returns true if `exprs` contains a [[Star]].
     */
    def containsStar(exprs: Seq[Expression]): Boolean =
      exprs.exists(_.collect { case _: Star => true }.nonEmpty)

    private def extractStar(exprs: Seq[Expression]): Seq[Star] =
      exprs.flatMap(_.collect { case s: Star => s })

    /**
     * Expands the matching attribute.*'s in `child`'s output.
     */
    def expandStarExpression(expr: Expression, child: LogicalPlan): Expression = {
      expr.transformUp {
        case f1: UnresolvedFunction if containsStar(f1.arguments) =>
          // SPECIAL CASE: We want to block count(tblName.*) because in spark, count(tblName.*) will
          // be expanded while count(*) will be converted to count(1). They will produce different
          // results and confuse users if there is any null values. For count(t1.*, t2.*), it is
          // still allowed, since it's well-defined in spark.
          if (!conf.allowStarWithSingleTableIdentifierInCount &&
              f1.nameParts == Seq("count") &&
              f1.arguments.length == 1) {
            f1.arguments.foreach {
              case u: UnresolvedStar if u.isQualifiedByTable(child, resolver) =>
                throw QueryCompilationErrors
                  .singleTableStarInCountNotAllowedError(u.target.get.mkString("."))
              case _ => // do nothing
            }
          }
          f1.copy(arguments = f1.arguments.flatMap {
            case s: Star => expand(s, child)
            case o => o :: Nil
          })
        case c: CreateNamedStruct if containsStar(c.valExprs) =>
          val newChildren = c.children.grouped(2).flatMap {
            case Seq(k, s : Star) => CreateStruct(expand(s, child)).children
            case kv => kv
          }
          c.copy(children = newChildren.toList )
        case c: CreateArray if containsStar(c.children) =>
          c.copy(children = c.children.flatMap {
            case s: Star => expand(s, child)
            case o => o :: Nil
          })
        case p: Murmur3Hash if containsStar(p.children) =>
          p.copy(children = p.children.flatMap {
            case s: Star => expand(s, child)
            case o => o :: Nil
          })
        case p: XxHash64 if containsStar(p.children) =>
          p.copy(children = p.children.flatMap {
            case s: Star => expand(s, child)
            case o => o :: Nil
          })
        // count(*) has been replaced by count(1)
        case o if containsStar(o.children) =>
          throw QueryCompilationErrors.invalidStarUsageError(s"expression '${o.prettyName}'",
            extractStar(o.children))
      }
    }
  }

  private def containsDeserializer(exprs: Seq[Expression]): Boolean = {
    exprs.exists(_.exists(_.isInstanceOf[UnresolvedDeserializer]))
  }

  // support CURRENT_DATE, CURRENT_TIMESTAMP, and grouping__id
  private val literalFunctions: Seq[(String, () => Expression, Expression => String)] = Seq(
    (CurrentDate().prettyName, () => CurrentDate(), toPrettySQL(_)),
    (CurrentTimestamp().prettyName, () => CurrentTimestamp(), toPrettySQL(_)),
    (CurrentUser().prettyName, () => CurrentUser(), toPrettySQL),
    ("user", () => CurrentUser(), toPrettySQL),
    (VirtualColumn.hiveGroupingIdName, () => GroupingID(Nil), _ => VirtualColumn.hiveGroupingIdName)
  )

  /**
   * Literal functions do not require the user to specify braces when calling them
   * When an attributes is not resolvable, we try to resolve it as a literal function.
   */
  private def resolveLiteralFunction(nameParts: Seq[String]): Option[NamedExpression] = {
    if (nameParts.length != 1) return None
    val name = nameParts.head
    literalFunctions.find(func => caseInsensitiveResolution(func._1, name)).map {
      case (_, getFuncExpr, getAliasName) =>
        val funcExpr = getFuncExpr()
        Alias(funcExpr, getAliasName(funcExpr))()
    }
  }

  /**
   * Resolves `UnresolvedAttribute`, `GetColumnByOrdinal` and extract value expressions(s) by
   * traversing the input expression in top-down manner. It must be top-down because we need to
   * skip over unbound lambda function expression. The lambda expressions are resolved in a
   * different place [[ResolveLambdaVariables]].
   *
   * Example :
   * SELECT transform(array(1, 2, 3), (x, i) -> x + i)"
   *
   * In the case above, x and i are resolved as lambda variables in [[ResolveLambdaVariables]].
   */
  private def resolveExpression(
      expr: Expression,
      resolveColumnByName: Seq[String] => Option[Expression],
      getAttrCandidates: () => Seq[Attribute],
      throws: Boolean): Expression = {
    def innerResolve(e: Expression, isTopLevel: Boolean): Expression = {
      if (e.resolved) return e
      e match {
        case f: LambdaFunction if !f.bound => f

        case GetColumnByOrdinal(ordinal, _) =>
          val attrCandidates = getAttrCandidates()
          assert(ordinal >= 0 && ordinal < attrCandidates.length)
          attrCandidates(ordinal)

        case GetViewColumnByNameAndOrdinal(
            viewName, colName, ordinal, expectedNumCandidates, viewDDL) =>
          val attrCandidates = getAttrCandidates()
          val matched = attrCandidates.filter(a => resolver(a.name, colName))
          if (matched.length != expectedNumCandidates) {
            throw QueryCompilationErrors.incompatibleViewSchemaChange(
              viewName, colName, expectedNumCandidates, matched, viewDDL)
          }
          matched(ordinal)

        case u @ UnresolvedAttribute(nameParts) =>
          val result = withPosition(u) {
            resolveColumnByName(nameParts).orElse(resolveLiteralFunction(nameParts)).map {
              // We trim unnecessary alias here. Note that, we cannot trim the alias at top-level,
              // as we should resolve `UnresolvedAttribute` to a named expression. The caller side
              // can trim the top-level alias if it's safe to do so. Since we will call
              // CleanupAliases later in Analyzer, trim non top-level unnecessary alias is safe.
              case Alias(child, _) if !isTopLevel => child
              case other => other
            }.getOrElse(u)
          }
          logDebug(s"Resolving $u to $result")
          result

        case u @ UnresolvedExtractValue(child, fieldName) =>
          val newChild = innerResolve(child, isTopLevel = false)
          if (newChild.resolved) {
            withOrigin(u.origin) {
              ExtractValue(newChild, fieldName, resolver)
            }
          } else {
            u.copy(child = newChild)
          }

        case _ => e.mapChildren(innerResolve(_, isTopLevel = false))
      }
    }

    try {
      innerResolve(expr, isTopLevel = true)
    } catch {
      case ae: AnalysisException if !throws =>
        logDebug(ae.getMessage)
        expr
    }
  }

  /**
   * Resolves `UnresolvedAttribute`, `GetColumnByOrdinal` and extract value expressions(s) by the
   * input plan's output attributes. In order to resolve the nested fields correctly, this function
   * makes use of `throws` parameter to control when to raise an AnalysisException.
   *
   * Example :
   * SELECT * FROM t ORDER BY a.b
   *
   * In the above example, after `a` is resolved to a struct-type column, we may fail to resolve `b`
   * if there is no such nested field named "b". We should not fail and wait for other rules to
   * resolve it if possible.
   */
  def resolveExpressionByPlanOutput(
      expr: Expression,
      plan: LogicalPlan,
      throws: Boolean = false): Expression = {
    resolveExpression(
      expr,
      resolveColumnByName = nameParts => {
        plan.resolve(nameParts, resolver)
      },
      getAttrCandidates = () => plan.output,
      throws = throws)
  }

  /**
   * Resolves `UnresolvedAttribute`, `GetColumnByOrdinal` and extract value expressions(s) by the
   * input plan's children output attributes.
   *
   * @param e The expression need to be resolved.
   * @param q The LogicalPlan whose children are used to resolve expression's attribute.
   * @return resolved Expression.
   */
  def resolveExpressionByPlanChildren(
      e: Expression,
      q: LogicalPlan): Expression = {
    resolveExpression(
      e,
      resolveColumnByName = nameParts => {
        q.resolveChildren(nameParts, resolver)
      },
      getAttrCandidates = () => {
        assert(q.children.length == 1)
        q.children.head.output
      },
      throws = true)
  }

  /**
   * In many dialects of SQL it is valid to use ordinal positions in order/sort by and group by
   * clauses. This rule is to convert ordinal positions to the corresponding expressions in the
   * select list. This support is introduced in Spark 2.0.
   *
   * - When the sort references or group by expressions are not integer but foldable expressions,
   * just ignore them.
   * - When spark.sql.orderByOrdinal/spark.sql.groupByOrdinal is set to false, ignore the position
   * numbers too.
   *
   * Before the release of Spark 2.0, the literals in order/sort by and group by clauses
   * have no effect on the results.
   */
  object ResolveOrdinalInOrderByAndGroupBy extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(UNRESOLVED_ORDINAL), ruleId) {
      case p if !p.childrenResolved => p
      // Replace the index with the related attribute for ORDER BY,
      // which is a 1-base position of the projection list.
      case Sort(orders, global, child)
        if orders.exists(_.child.isInstanceOf[UnresolvedOrdinal]) =>
        val newOrders = orders map {
          case s @ SortOrder(UnresolvedOrdinal(index), direction, nullOrdering, _) =>
            if (index > 0 && index <= child.output.size) {
              SortOrder(child.output(index - 1), direction, nullOrdering, Seq.empty)
            } else {
              throw QueryCompilationErrors.orderByPositionRangeError(index, child.output.size, s)
            }
          case o => o
        }
        Sort(newOrders, global, child)

      // Replace the index with the corresponding expression in aggregateExpressions. The index is
      // a 1-base position of aggregateExpressions, which is output columns (select expression)
      case Aggregate(groups, aggs, child) if aggs.forall(_.resolved) &&
        groups.exists(containUnresolvedOrdinal) =>
        val newGroups = groups.map(resolveGroupByExpressionOrdinal(_, aggs))
        Aggregate(newGroups, aggs, child)
    }

    private def containUnresolvedOrdinal(e: Expression): Boolean = e match {
      case _: UnresolvedOrdinal => true
      case gs: BaseGroupingSets => gs.children.exists(containUnresolvedOrdinal)
      case _ => false
    }

    private def resolveGroupByExpressionOrdinal(
        expr: Expression,
        aggs: Seq[Expression]): Expression = expr match {
      case ordinal @ UnresolvedOrdinal(index) =>
        withPosition(ordinal) {
          if (index > 0 && index <= aggs.size) {
            val ordinalExpr = aggs(index - 1)
            if (ordinalExpr.exists(_.isInstanceOf[AggregateExpression])) {
              throw QueryCompilationErrors.groupByPositionRefersToAggregateFunctionError(
                index, ordinalExpr)
            } else {
              ordinalExpr
            }
          } else {
            throw QueryCompilationErrors.groupByPositionRangeError(index, aggs.size)
          }
        }
      case gs: BaseGroupingSets =>
        gs.withNewChildren(gs.children.map(resolveGroupByExpressionOrdinal(_, aggs)))
      case others => others
    }
  }

  /**
   * Replace unresolved expressions in grouping keys with resolved ones in SELECT clauses.
   * This rule is expected to run after [[ResolveReferences]] applied.
   */
  object ResolveAggAliasInGroupBy extends Rule[LogicalPlan] {

    // This is a strict check though, we put this to apply the rule only if the expression is not
    // resolvable by child.
    private def notResolvableByChild(attrName: String, child: LogicalPlan): Boolean = {
      !child.output.exists(a => resolver(a.name, attrName))
    }

    private def mayResolveAttrByAggregateExprs(
        exprs: Seq[Expression], aggs: Seq[NamedExpression], child: LogicalPlan): Seq[Expression] = {
      exprs.map { _.transformWithPruning(_.containsPattern(UNRESOLVED_ATTRIBUTE)) {
        case u: UnresolvedAttribute if notResolvableByChild(u.name, child) =>
          aggs.find(ne => resolver(ne.name, u.name)).getOrElse(u)
      }}
    }

    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      // mayResolveAttrByAggregateExprs requires the TreePattern UNRESOLVED_ATTRIBUTE.
      _.containsAllPatterns(AGGREGATE, UNRESOLVED_ATTRIBUTE), ruleId) {
      case agg @ Aggregate(groups, aggs, child)
          if conf.groupByAliases && child.resolved && aggs.forall(_.resolved) &&
            groups.exists(!_.resolved) =>
        agg.copy(groupingExpressions = mayResolveAttrByAggregateExprs(groups, aggs, child))
    }
  }

  /**
   * In many dialects of SQL it is valid to sort by attributes that are not present in the SELECT
   * clause.  This rule detects such queries and adds the required attributes to the original
   * projection, so that they will be available during sorting. Another projection is added to
   * remove these attributes after sorting.
   *
   * The HAVING clause could also used a grouping columns that is not presented in the SELECT.
   */
  object ResolveMissingReferences extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsAnyPattern(SORT, FILTER, REPARTITION_OPERATION), ruleId) {
      // Skip sort with aggregate. This will be handled in ResolveAggregateFunctions
      case sa @ Sort(_, _, child: Aggregate) => sa

      case s @ Sort(order, _, child)
          if (!s.resolved || s.missingInput.nonEmpty) && child.resolved =>
        val (newOrder, newChild) = resolveExprsAndAddMissingAttrs(order, child)
        val ordering = newOrder.map(_.asInstanceOf[SortOrder])
        if (child.output == newChild.output) {
          s.copy(order = ordering)
        } else {
          // Add missing attributes and then project them away.
          val newSort = s.copy(order = ordering, child = newChild)
          Project(child.output, newSort)
        }

      case f @ Filter(cond, child) if (!f.resolved || f.missingInput.nonEmpty) && child.resolved =>
        val (newCond, newChild) = resolveExprsAndAddMissingAttrs(Seq(cond), child)
        if (child.output == newChild.output) {
          f.copy(condition = newCond.head)
        } else {
          // Add missing attributes and then project them away.
          val newFilter = Filter(newCond.head, newChild)
          Project(child.output, newFilter)
        }

      case r @ RepartitionByExpression(partitionExprs, child, _)
          if (!r.resolved || r.missingInput.nonEmpty) && child.resolved =>
        val (newPartitionExprs, newChild) = resolveExprsAndAddMissingAttrs(partitionExprs, child)
        if (child.output == newChild.output) {
          r.copy(newPartitionExprs, newChild)
        } else {
          Project(child.output, r.copy(newPartitionExprs, newChild))
        }
    }

    /**
     * This method tries to resolve expressions and find missing attributes recursively.
     * Specifically, when the expressions used in `Sort` or `Filter` contain unresolved attributes
     * or resolved attributes which are missing from child output. This method tries to find the
     * missing attributes and add them into the projection.
     */
    private def resolveExprsAndAddMissingAttrs(
        exprs: Seq[Expression], plan: LogicalPlan): (Seq[Expression], LogicalPlan) = {
      // Missing attributes can be unresolved attributes or resolved attributes which are not in
      // the output attributes of the plan.
      if (exprs.forall(e => e.resolved && e.references.subsetOf(plan.outputSet))) {
        (exprs, plan)
      } else {
        plan match {
          case p: Project =>
            // Resolving expressions against current plan.
            val maybeResolvedExprs = exprs.map(resolveExpressionByPlanOutput(_, p))
            // Recursively resolving expressions on the child of current plan.
            val (newExprs, newChild) = resolveExprsAndAddMissingAttrs(maybeResolvedExprs, p.child)
            // If some attributes used by expressions are resolvable only on the rewritten child
            // plan, we need to add them into original projection.
            val missingAttrs = (AttributeSet(newExprs) -- p.outputSet).intersect(newChild.outputSet)
            (newExprs, Project(p.projectList ++ missingAttrs, newChild))

          case a @ Aggregate(groupExprs, aggExprs, child) =>
            val maybeResolvedExprs = exprs.map(resolveExpressionByPlanOutput(_, a))
            val (newExprs, newChild) = resolveExprsAndAddMissingAttrs(maybeResolvedExprs, child)
            val missingAttrs = (AttributeSet(newExprs) -- a.outputSet).intersect(newChild.outputSet)
            if (missingAttrs.forall(attr => groupExprs.exists(_.semanticEquals(attr)))) {
              // All the missing attributes are grouping expressions, valid case.
              (newExprs, a.copy(aggregateExpressions = aggExprs ++ missingAttrs, child = newChild))
            } else {
              // Need to add non-grouping attributes, invalid case.
              (exprs, a)
            }

          case g: Generate =>
            val maybeResolvedExprs = exprs.map(resolveExpressionByPlanOutput(_, g))
            val (newExprs, newChild) = resolveExprsAndAddMissingAttrs(maybeResolvedExprs, g.child)
            (newExprs, g.copy(unrequiredChildIndex = Nil, child = newChild))

          // For `Distinct` and `SubqueryAlias`, we can't recursively resolve and add attributes
          // via its children.
          case u: UnaryNode if !u.isInstanceOf[Distinct] && !u.isInstanceOf[SubqueryAlias] =>
            val maybeResolvedExprs = exprs.map(resolveExpressionByPlanOutput(_, u))
            val (newExprs, newChild) = resolveExprsAndAddMissingAttrs(maybeResolvedExprs, u.child)
            (newExprs, u.withNewChildren(Seq(newChild)))

          // For other operators, we can't recursively resolve and add attributes via its children.
          case other =>
            (exprs.map(resolveExpressionByPlanOutput(_, other)), other)
        }
      }
    }
  }

  /**
   * Checks whether a function identifier referenced by an [[UnresolvedFunction]] is defined in the
   * function registry. Note that this rule doesn't try to resolve the [[UnresolvedFunction]]. It
   * only performs simple existence check according to the function identifier to quickly identify
   * undefined functions without triggering relation resolution, which may incur potentially
   * expensive partition/schema discovery process in some cases.
   * In order to avoid duplicate external functions lookup, the external function identifier will
   * store in the local hash set externalFunctionNameSet.
   * @see [[ResolveFunctions]]
   * @see https://issues.apache.org/jira/browse/SPARK-19737
   */
  object LookupFunctions extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = {
      val externalFunctionNameSet = new mutable.HashSet[Seq[String]]()

      plan.resolveExpressionsWithPruning(_.containsAnyPattern(UNRESOLVED_FUNCTION)) {
        case f @ UnresolvedFunction(nameParts, _, _, _, _) =>
          if (ResolveFunctions.lookupBuiltinOrTempFunction(nameParts).isDefined) {
            f
          } else {
            val CatalogAndIdentifier(catalog, ident) = expandIdentifier(nameParts)
            val fullName = normalizeFuncName(catalog.name +: ident.namespace :+ ident.name)
            if (externalFunctionNameSet.contains(fullName)) {
              f
            } else if (catalog.asFunctionCatalog.functionExists(ident)) {
              externalFunctionNameSet.add(fullName)
              f
            } else {
              throw QueryCompilationErrors.noSuchFunctionError(nameParts, f, Some(fullName))
            }
          }
      }
    }

    def normalizeFuncName(name: Seq[String]): Seq[String] = {
      if (conf.caseSensitiveAnalysis) {
        name
      } else {
        name.map(_.toLowerCase(Locale.ROOT))
      }
    }
  }

  /**
   * Replaces [[UnresolvedFunc]]s with concrete [[LogicalPlan]]s.
   * Replaces [[UnresolvedFunction]]s with concrete [[Expression]]s.
   * Replaces [[UnresolvedGenerator]]s with concrete [[Expression]]s.
   * Replaces [[UnresolvedTableValuedFunction]]s with concrete [[LogicalPlan]]s.
   */
  object ResolveFunctions extends Rule[LogicalPlan] {
    val trimWarningEnabled = new AtomicBoolean(true)

    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsAnyPattern(UNRESOLVED_FUNC, UNRESOLVED_FUNCTION, GENERATOR,
        UNRESOLVED_TABLE_VALUED_FUNCTION), ruleId) {
      // Resolve functions with concrete relations from v2 catalog.
      case u @ UnresolvedFunc(nameParts, cmd, requirePersistentFunc, mismatchHint, _) =>
        lookupBuiltinOrTempFunction(nameParts)
          .orElse(lookupBuiltinOrTempTableFunction(nameParts)).map { info =>
          if (requirePersistentFunc) {
            throw QueryCompilationErrors.expectPersistentFuncError(
              nameParts.head, cmd, mismatchHint, u)
          } else {
            ResolvedNonPersistentFunc(nameParts.head, V1Function(info))
          }
        }.getOrElse {
          val CatalogAndIdentifier(catalog, ident) = expandIdentifier(nameParts)
          val fullName = catalog.name +: ident.namespace :+ ident.name
          CatalogV2Util.loadFunction(catalog, ident).map { func =>
            ResolvedPersistentFunc(catalog.asFunctionCatalog, ident, func)
          }.getOrElse(u.copy(possibleQualifiedName = Some(fullName)))
        }

      // Resolve table-valued function references.
      case u: UnresolvedTableValuedFunction if u.functionArgs.forall(_.resolved) =>
        withPosition(u) {
          val resolvedFunc = try {
            resolveBuiltinOrTempTableFunction(u.name, u.functionArgs).getOrElse {
              val CatalogAndIdentifier(catalog, ident) = expandIdentifier(u.name)
              if (CatalogV2Util.isSessionCatalog(catalog)) {
                v1SessionCatalog.resolvePersistentTableFunction(
                  ident.asFunctionIdentifier, u.functionArgs)
              } else {
                throw QueryCompilationErrors.missingCatalogAbilityError(
                  catalog, "table-valued functions")
              }
            }
          } catch {
            case _: NoSuchFunctionException =>
              u.failAnalysis(s"could not resolve `${u.name.quoted}` to a table-valued function")
          }
          // If alias names assigned, add `Project` with the aliases
          if (u.outputNames.nonEmpty) {
            val outputAttrs = resolvedFunc.output
            // Checks if the number of the aliases is equal to expected one
            if (u.outputNames.size != outputAttrs.size) {
              u.failAnalysis(
                s"Number of given aliases does not match number of output columns. " +
                  s"Function name: ${u.name.quoted}; number of aliases: " +
                  s"${u.outputNames.size}; number of output columns: ${outputAttrs.size}.")
            }
            val aliases = outputAttrs.zip(u.outputNames).map {
              case (attr, name) => Alias(attr, name)()
            }
            Project(aliases, resolvedFunc)
          } else {
            resolvedFunc
          }
        }

      case q: LogicalPlan =>
        q.transformExpressionsWithPruning(
          _.containsAnyPattern(UNRESOLVED_FUNCTION, GENERATOR), ruleId) {
          case u @ UnresolvedFunction(nameParts, arguments, _, _, _)
              if hasLambdaAndResolvedArguments(arguments) => withPosition(u) {
            resolveBuiltinOrTempFunction(nameParts, arguments, Some(u)).map {
              case func: HigherOrderFunction => func
              case other => other.failAnalysis(
                "A lambda function should only be used in a higher order function. However, " +
                  s"its class is ${other.getClass.getCanonicalName}, which is not a " +
                  s"higher order function.")
              // We don't support persistent high-order functions yet.
            }.getOrElse(throw QueryCompilationErrors.noSuchFunctionError(nameParts, u))
          }

          case u if !u.childrenResolved => u // Skip until children are resolved.

          case u @ UnresolvedGenerator(name, arguments) => withPosition(u) {
            // For generator function, the parser only accepts v1 function name and creates
            // `FunctionIdentifier`.
            v1SessionCatalog.lookupFunction(name, arguments) match {
              case generator: Generator => generator
              case other => throw QueryCompilationErrors.generatorNotExpectedError(
                name, other.getClass.getCanonicalName)
            }
          }

          case u @ UnresolvedFunction(nameParts, arguments, _, _, _) => withPosition(u) {
            resolveBuiltinOrTempFunction(nameParts, arguments, Some(u)).getOrElse {
              val CatalogAndIdentifier(catalog, ident) = expandIdentifier(nameParts)
              if (CatalogV2Util.isSessionCatalog(catalog)) {
                resolveV1Function(ident.asFunctionIdentifier, arguments, u)
              } else {
                resolveV2Function(catalog.asFunctionCatalog, ident, arguments, u)
              }
            }
          }
        }
    }

    /**
     * Check if the arguments of a function are either resolved or a lambda function.
     */
    private def hasLambdaAndResolvedArguments(expressions: Seq[Expression]): Boolean = {
      val (lambdas, others) = expressions.partition(_.isInstanceOf[LambdaFunction])
      lambdas.nonEmpty && others.forall(_.resolved)
    }

    def lookupBuiltinOrTempFunction(name: Seq[String]): Option[ExpressionInfo] = {
      if (name.length == 1) {
        v1SessionCatalog.lookupBuiltinOrTempFunction(name.head)
      } else {
        None
      }
    }

    def lookupBuiltinOrTempTableFunction(name: Seq[String]): Option[ExpressionInfo] = {
      if (name.length == 1) {
        v1SessionCatalog.lookupBuiltinOrTempTableFunction(name.head)
      } else {
        None
      }
    }

    private def resolveBuiltinOrTempFunction(
        name: Seq[String],
        arguments: Seq[Expression],
        u: Option[UnresolvedFunction]): Option[Expression] = {
      if (name.length == 1) {
        v1SessionCatalog.resolveBuiltinOrTempFunction(name.head, arguments).map { func =>
          if (u.isDefined) validateFunction(func, arguments.length, u.get) else func
        }
      } else {
        None
      }
    }

    private def resolveBuiltinOrTempTableFunction(
        name: Seq[String],
        arguments: Seq[Expression]): Option[LogicalPlan] = {
      if (name.length == 1) {
        v1SessionCatalog.resolveBuiltinOrTempTableFunction(name.head, arguments)
      } else {
        None
      }
    }

    private def resolveV1Function(
        ident: FunctionIdentifier,
        arguments: Seq[Expression],
        u: UnresolvedFunction): Expression = {
      val func = v1SessionCatalog.resolvePersistentFunction(ident, arguments)
      validateFunction(func, arguments.length, u)
    }

    private def validateFunction(
        func: Expression,
        numArgs: Int,
        u: UnresolvedFunction): Expression = {
      func match {
        // AggregateWindowFunctions are AggregateFunctions that can only be evaluated within
        // the context of a Window clause. They do not need to be wrapped in an
        // AggregateExpression.
        case wf: AggregateWindowFunction =>
          if (u.isDistinct) {
            throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
              wf.prettyName, "DISTINCT")
          } else if (u.filter.isDefined) {
            throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
              wf.prettyName, "FILTER clause")
          } else if (u.ignoreNulls) {
            wf match {
              case nthValue: NthValue =>
                nthValue.copy(ignoreNulls = u.ignoreNulls)
              case _ =>
                throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
                  wf.prettyName, "IGNORE NULLS")
            }
          } else {
            wf
          }
        case owf: FrameLessOffsetWindowFunction =>
          if (u.isDistinct) {
            throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
              owf.prettyName, "DISTINCT")
          } else if (u.filter.isDefined) {
            throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
              owf.prettyName, "FILTER clause")
          } else if (u.ignoreNulls) {
            owf match {
              case lead: Lead =>
                lead.copy(ignoreNulls = u.ignoreNulls)
              case lag: Lag =>
                lag.copy(ignoreNulls = u.ignoreNulls)
            }
          } else {
            owf
          }
        // We get an aggregate function, we need to wrap it in an AggregateExpression.
        case agg: AggregateFunction =>
          u.filter match {
            case Some(filter) if !filter.deterministic =>
              throw QueryCompilationErrors.nonDeterministicFilterInAggregateError
            case Some(filter) if filter.dataType != BooleanType =>
              throw QueryCompilationErrors.nonBooleanFilterInAggregateError
            case Some(filter) if filter.exists(_.isInstanceOf[AggregateExpression]) =>
              throw QueryCompilationErrors.aggregateInAggregateFilterError
            case Some(filter) if filter.exists(_.isInstanceOf[WindowExpression]) =>
              throw QueryCompilationErrors.windowFunctionInAggregateFilterError
            case _ =>
          }
          if (u.ignoreNulls) {
            val aggFunc = agg match {
              case first: First => first.copy(ignoreNulls = u.ignoreNulls)
              case last: Last => last.copy(ignoreNulls = u.ignoreNulls)
              case any_value: AnyValue => any_value.copy(ignoreNulls = u.ignoreNulls)
              case _ =>
                throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
                  agg.prettyName, "IGNORE NULLS")
            }
            aggFunc.toAggregateExpression(u.isDistinct, u.filter)
          } else {
            agg.toAggregateExpression(u.isDistinct, u.filter)
          }
        // This function is not an aggregate function, just return the resolved one.
        case other if u.isDistinct =>
          throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
            other.prettyName, "DISTINCT")
        case other if u.filter.isDefined =>
          throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
            other.prettyName, "FILTER clause")
        case other if u.ignoreNulls =>
          throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
            other.prettyName, "IGNORE NULLS")
        case e: String2TrimExpression if numArgs == 2 =>
          if (trimWarningEnabled.get) {
            log.warn("Two-parameter TRIM/LTRIM/RTRIM function signatures are deprecated." +
              " Use SQL syntax `TRIM((BOTH | LEADING | TRAILING)? trimStr FROM str)`" +
              " instead.")
            trimWarningEnabled.set(false)
          }
          e
        case other =>
          other
      }
    }

    private def resolveV2Function(
        catalog: FunctionCatalog,
        ident: Identifier,
        arguments: Seq[Expression],
        u: UnresolvedFunction): Expression = {
      val unbound = catalog.loadFunction(ident)
      val inputType = StructType(arguments.zipWithIndex.map {
        case (exp, pos) => StructField(s"_$pos", exp.dataType, exp.nullable)
      })
      val bound = try {
        unbound.bind(inputType)
      } catch {
        case unsupported: UnsupportedOperationException =>
          throw QueryCompilationErrors.functionCannotProcessInputError(
            unbound, arguments, unsupported)
      }

      if (bound.inputTypes().length != arguments.length) {
        throw QueryCompilationErrors.v2FunctionInvalidInputTypeLengthError(
          bound, arguments)
      }

      bound match {
        case scalarFunc: ScalarFunction[_] =>
          processV2ScalarFunction(scalarFunc, arguments, u)
        case aggFunc: V2AggregateFunction[_, _] =>
          processV2AggregateFunction(aggFunc, arguments, u)
        case _ =>
          failAnalysis(s"Function '${bound.name()}' does not implement ScalarFunction" +
            s" or AggregateFunction")
      }
    }

    private def processV2ScalarFunction(
        scalarFunc: ScalarFunction[_],
        arguments: Seq[Expression],
        u: UnresolvedFunction): Expression = {
      if (u.isDistinct) {
        throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
          scalarFunc.name(), "DISTINCT")
      } else if (u.filter.isDefined) {
        throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
          scalarFunc.name(), "FILTER clause")
      } else if (u.ignoreNulls) {
        throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
          scalarFunc.name(), "IGNORE NULLS")
      } else {
        V2ExpressionUtils.resolveScalarFunction(scalarFunc, arguments)
      }
    }

    private def processV2AggregateFunction(
        aggFunc: V2AggregateFunction[_, _],
        arguments: Seq[Expression],
        u: UnresolvedFunction): Expression = {
      if (u.ignoreNulls) {
        throw QueryCompilationErrors.functionWithUnsupportedSyntaxError(
          aggFunc.name(), "IGNORE NULLS")
      }
      val aggregator = V2Aggregator(aggFunc, arguments)
      aggregator.toAggregateExpression(u.isDistinct, u.filter)
    }
  }

  /**
   * This rule resolves and rewrites subqueries inside expressions.
   *
   * Note: CTEs are handled in CTESubstitution.
   */
  object ResolveSubquery extends Rule[LogicalPlan] {
    /**
     * Resolve the correlated expressions in a subquery, as if the expressions live in the outer
     * plan. All resolved outer references are wrapped in an [[OuterReference]]
     */
    private def resolveOuterReferences(plan: LogicalPlan, outer: LogicalPlan): LogicalPlan = {
      plan.resolveOperatorsDownWithPruning(_.containsPattern(UNRESOLVED_ATTRIBUTE)) {
        case q: LogicalPlan if q.childrenResolved && !q.resolved =>
          q.transformExpressionsWithPruning(_.containsPattern(UNRESOLVED_ATTRIBUTE)) {
            case u @ UnresolvedAttribute(nameParts) =>
              withPosition(u) {
                try {
                  outer.resolveChildren(nameParts, resolver) match {
                    case Some(outerAttr) => wrapOuterReference(outerAttr)
                    case None => u
                  }
                } catch {
                  case ae: AnalysisException =>
                    logDebug(ae.getMessage)
                    u
                }
              }
          }
      }
    }

    /**
     * Resolves the subquery plan that is referenced in a subquery expression. The normal
     * attribute references are resolved using regular analyzer and the outer references are
     * resolved from the outer plans using the resolveOuterReferences method.
     *
     * Outer references from the correlated predicates are updated as children of
     * Subquery expression.
     */
    private def resolveSubQuery(
        e: SubqueryExpression,
        outer: LogicalPlan)(
        f: (LogicalPlan, Seq[Expression]) => SubqueryExpression): SubqueryExpression = {
      // Step 1: Resolve the outer expressions.
      var previous: LogicalPlan = null
      var current = e.plan
      do {
        // Try to resolve the subquery plan using the regular analyzer.
        previous = current
        current = AnalysisContext.withOuterPlan(outer) {
          executeSameContext(current)
        }

        // Use the outer references to resolve the subquery plan if it isn't resolved yet.
        if (!current.resolved) {
          current = resolveOuterReferences(current, outer)
        }
      } while (!current.resolved && !current.fastEquals(previous))

      // Step 2: If the subquery plan is fully resolved, pull the outer references and record
      // them as children of SubqueryExpression.
      if (current.resolved) {
        // Record the outer references as children of subquery expression.
        f(current, SubExprUtils.getOuterReferences(current))
      } else {
        e.withNewPlan(current)
      }
    }

    /**
     * Resolves the subquery. Apart of resolving the subquery and outer references (if any)
     * in the subquery plan, the children of subquery expression are updated to record the
     * outer references. This is needed to make sure
     * (1) The column(s) referred from the outer query are not pruned from the plan during
     *     optimization.
     * (2) Any aggregate expression(s) that reference outer attributes are pushed down to
     *     outer plan to get evaluated.
     */
    private def resolveSubQueries(plan: LogicalPlan, outer: LogicalPlan): LogicalPlan = {
      plan.transformAllExpressionsWithPruning(_.containsPattern(PLAN_EXPRESSION), ruleId) {
        case s @ ScalarSubquery(sub, _, exprId, _) if !sub.resolved =>
          resolveSubQuery(s, outer)(ScalarSubquery(_, _, exprId))
        case e @ Exists(sub, _, exprId, _) if !sub.resolved =>
          resolveSubQuery(e, outer)(Exists(_, _, exprId))
        case InSubquery(values, l @ ListQuery(_, _, exprId, _, _))
            if values.forall(_.resolved) && !l.resolved =>
          val expr = resolveSubQuery(l, outer)((plan, exprs) => {
            ListQuery(plan, exprs, exprId, plan.output)
          })
          InSubquery(values, expr.asInstanceOf[ListQuery])
        case s @ LateralSubquery(sub, _, exprId, _) if !sub.resolved =>
          resolveSubQuery(s, outer)(LateralSubquery(_, _, exprId))
      }
    }

    /**
     * Resolve and rewrite all subqueries in an operator tree..
     */
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(PLAN_EXPRESSION), ruleId) {
      case j: LateralJoin if j.left.resolved =>
        // We can't pass `LateralJoin` as the outer plan, as its right child is not resolved yet
        // and we can't call `LateralJoin.resolveChildren` to resolve outer references. Here we
        // create a fake Project node as the outer plan.
        resolveSubQueries(j, Project(Nil, j.left))
      // Only a few unary nodes (Project/Filter/Aggregate) can contain subqueries.
      case q: UnaryNode if q.childrenResolved =>
        resolveSubQueries(q, q)
      case r: RelationTimeTravel =>
        resolveSubQueries(r, r)
      case j: Join if j.childrenResolved && j.duplicateResolved =>
        resolveSubQueries(j, j)
      case s: SupportsSubquery if s.childrenResolved =>
        resolveSubQueries(s, s)
    }
  }

  /**
   * Replaces unresolved column aliases for a subquery with projections.
   */
  object ResolveSubqueryColumnAliases extends Rule[LogicalPlan] {

     def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
       _.containsPattern(UNRESOLVED_SUBQUERY_COLUMN_ALIAS), ruleId) {
      case u @ UnresolvedSubqueryColumnAliases(columnNames, child) if child.resolved =>
        // Resolves output attributes if a query has alias names in its subquery:
        // e.g., SELECT * FROM (SELECT 1 AS a, 1 AS b) t(col1, col2)
        val outputAttrs = child.output
        // Checks if the number of the aliases equals to the number of output columns
        // in the subquery.
        if (columnNames.size != outputAttrs.size) {
          throw QueryCompilationErrors.aliasNumberNotMatchColumnNumberError(
            columnNames.size, outputAttrs.size, u)
        }
        val aliases = outputAttrs.zip(columnNames).map { case (attr, aliasName) =>
          Alias(attr, aliasName)()
        }
        Project(aliases, child)
    }
  }

  /**
   * Turns projections that contain aggregate expressions into aggregations.
   */
  object GlobalAggregates extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      t => t.containsAnyPattern(AGGREGATE_EXPRESSION, PYTHON_UDF) && t.containsPattern(PROJECT),
      ruleId) {
      case Project(projectList, child) if containsAggregates(projectList) =>
        Aggregate(Nil, projectList, child)
    }

    def containsAggregates(exprs: Seq[Expression]): Boolean = {
      // Collect all Windowed Aggregate Expressions.
      val windowedAggExprs: Set[Expression] = exprs.flatMap { expr =>
        expr.collect {
          case WindowExpression(ae: AggregateExpression, _) => ae
          case WindowExpression(e: PythonUDF, _) if PythonUDF.isGroupedAggPandasUDF(e) => e
          case UnresolvedWindowExpression(ae: AggregateExpression, _) => ae
          case UnresolvedWindowExpression(e: PythonUDF, _)
            if PythonUDF.isGroupedAggPandasUDF(e) => e
        }
      }.toSet

      // Find the first Aggregate Expression that is not Windowed.
      exprs.exists(_.exists {
        case ae: AggregateExpression => !windowedAggExprs.contains(ae)
        case e: PythonUDF => PythonUDF.isGroupedAggPandasUDF(e) && !windowedAggExprs.contains(e)
        case _ => false
      })
    }
  }

  /**
   * This rule finds aggregate expressions that are not in an aggregate operator.  For example,
   * those in a HAVING clause or ORDER BY clause.  These expressions are pushed down to the
   * underlying aggregate operator and then projected away after the original operator.
   */
  object ResolveAggregateFunctions extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(AGGREGATE), ruleId) {
      // Resolve aggregate with having clause to Filter(..., Aggregate()). Note, to avoid wrongly
      // resolve the having condition expression, here we skip resolving it in ResolveReferences
      // and transform it to Filter after aggregate is resolved. Basically columns in HAVING should
      // be resolved with `agg.child.output` first. See more details in SPARK-31519.
      case UnresolvedHaving(cond, agg: Aggregate) if agg.resolved =>
        resolveOperatorWithAggregate(Seq(cond), agg, (newExprs, newChild) => {
          Filter(newExprs.head, newChild)
        })

      case Filter(cond, agg: Aggregate) if agg.resolved =>
        // We should resolve the references normally based on child (agg.output) first.
        val maybeResolved = resolveExpressionByPlanOutput(cond, agg)
        resolveOperatorWithAggregate(Seq(maybeResolved), agg, (newExprs, newChild) => {
          Filter(newExprs.head, newChild)
        })

      case Sort(sortOrder, global, agg: Aggregate) if agg.resolved =>
        // We should resolve the references normally based on child (agg.output) first.
        val maybeResolved = sortOrder.map(_.child).map(resolveExpressionByPlanOutput(_, agg))
        resolveOperatorWithAggregate(maybeResolved, agg, (newExprs, newChild) => {
          val newSortOrder = sortOrder.zip(newExprs).map {
            case (sortOrder, expr) => sortOrder.copy(child = expr)
          }
          Sort(newSortOrder, global, newChild)
        })
    }

    /**
     * Resolves the given expressions as if they are in the given Aggregate operator, which means
     * the column can be resolved using `agg.child` and aggregate functions/grouping columns are
     * allowed. It returns a list of named expressions that need to be appended to
     * `agg.aggregateExpressions`, and the list of resolved expressions.
     */
    def resolveExprsWithAggregate(
        exprs: Seq[Expression],
        agg: Aggregate): (Seq[NamedExpression], Seq[Expression]) = {
      def resolveCol(input: Expression): Expression = {
        input.transform {
          case u: UnresolvedAttribute =>
            try {
              // Resolve the column and wrap it with `TempResolvedColumn`. If the resolved column
              // doesn't end up with as aggregate function input or grouping column, we should
              // undo the column resolution to avoid confusing error message. For example, if
              // a table `t` has two columns `c1` and `c2`, for query `SELECT ... FROM t
              // GROUP BY c1 HAVING c2 = 0`, even though we can resolve column `c2` here, we
              // should undo it later and fail with "Column c2 not found".
              agg.child.resolve(u.nameParts, resolver).map({
                case a: Alias => TempResolvedColumn(a.child, u.nameParts)
                case o => TempResolvedColumn(o, u.nameParts)
              }).getOrElse(u)
            } catch {
              case ae: AnalysisException =>
                logDebug(ae.getMessage)
                u
            }
        }
      }

      def resolveSubQuery(input: Expression): Expression = {
        if (SubqueryExpression.hasSubquery(input)) {
          val fake = Project(Alias(input, "fake")() :: Nil, agg.child)
          ResolveSubquery(fake).asInstanceOf[Project].projectList.head.asInstanceOf[Alias].child
        } else {
          input
        }
      }

      val extraAggExprs = ArrayBuffer.empty[NamedExpression]
      val transformed = exprs.map { e =>
        // Try resolving the expression as though it is in the aggregate clause.
        val maybeResolved = resolveSubQuery(resolveCol(e))
        if (!maybeResolved.resolved) {
          maybeResolved
        } else {
          buildAggExprList(maybeResolved, agg, extraAggExprs)
        }
      }
      (extraAggExprs.toSeq, transformed)
    }

    private def buildAggExprList(
        expr: Expression,
        agg: Aggregate,
        aggExprList: ArrayBuffer[NamedExpression]): Expression = {
      // Avoid adding an extra aggregate expression if it's already present in
      // `agg.aggregateExpressions`.
      val index = agg.aggregateExpressions.indexWhere {
        case Alias(child, _) => child semanticEquals expr
        case other => other semanticEquals expr
      }
      if (index >= 0) {
        agg.aggregateExpressions(index).toAttribute
      } else {
        expr match {
          case ae: AggregateExpression =>
            val cleaned = RemoveTempResolvedColumn.trimTempResolvedColumn(ae)
            val alias = Alias(cleaned, cleaned.toString)()
            aggExprList += alias
            alias.toAttribute
          case grouping: Expression if agg.groupingExpressions.exists(grouping.semanticEquals) =>
            RemoveTempResolvedColumn.trimTempResolvedColumn(grouping) match {
              case ne: NamedExpression =>
                aggExprList += ne
                ne.toAttribute
              case other =>
                val alias = Alias(other, other.toString)()
                aggExprList += alias
                alias.toAttribute
            }
          case t: TempResolvedColumn =>
            // Undo the resolution as this column is neither inside aggregate functions nor a
            // grouping column. It shouldn't be resolved with `agg.child.output`.
            RemoveTempResolvedColumn.restoreTempResolvedColumn(t)
          case other =>
            other.withNewChildren(other.children.map(buildAggExprList(_, agg, aggExprList)))
        }
      }
    }

    def resolveOperatorWithAggregate(
        exprs: Seq[Expression],
        agg: Aggregate,
        buildOperator: (Seq[Expression], Aggregate) => LogicalPlan): LogicalPlan = {
      val (extraAggExprs, resolvedExprs) = resolveExprsWithAggregate(exprs, agg)
      if (extraAggExprs.isEmpty) {
        buildOperator(resolvedExprs, agg)
      } else {
        Project(agg.output, buildOperator(resolvedExprs, agg.copy(
          aggregateExpressions = agg.aggregateExpressions ++ extraAggExprs)))
      }
    }
  }

  /**
   * Extracts [[Generator]] from the projectList of a [[Project]] operator and creates [[Generate]]
   * operator under [[Project]].
   *
   * This rule will throw [[AnalysisException]] for following cases:
   * 1. [[Generator]] is nested in expressions, e.g. `SELECT explode(list) + 1 FROM tbl`
   * 2. more than one [[Generator]] is found in projectList,
   *    e.g. `SELECT explode(list), explode(list) FROM tbl`
   * 3. [[Generator]] is found in other operators that are not [[Project]] or [[Generate]],
   *    e.g. `SELECT * FROM tbl SORT BY explode(list)`
   */
  object ExtractGenerator extends Rule[LogicalPlan] {
    private def hasGenerator(expr: Expression): Boolean = {
      expr.exists(_.isInstanceOf[Generator])
    }

    private def hasNestedGenerator(expr: NamedExpression): Boolean = {
      @scala.annotation.tailrec
      def hasInnerGenerator(g: Generator): Boolean = g match {
        // Since `GeneratorOuter` is just a wrapper of generators, we skip it here
        case go: GeneratorOuter =>
          hasInnerGenerator(go.child)
        case _ =>
          g.children.exists { _.exists {
            case _: Generator => true
            case _ => false
          } }
      }
      trimNonTopLevelAliases(expr) match {
        case UnresolvedAlias(g: Generator, _) => hasInnerGenerator(g)
        case Alias(g: Generator, _) => hasInnerGenerator(g)
        case MultiAlias(g: Generator, _) => hasInnerGenerator(g)
        case other => hasGenerator(other)
      }
    }

    private def hasAggFunctionInGenerator(ne: Seq[NamedExpression]): Boolean = {
      ne.exists(_.exists {
        case g: Generator =>
          g.children.exists(_.exists(_.isInstanceOf[AggregateFunction]))
        case _ =>
          false
      })
    }

    private def trimAlias(expr: NamedExpression): Expression = expr match {
      case UnresolvedAlias(child, _) => child
      case Alias(child, _) => child
      case MultiAlias(child, _) => child
      case _ => expr
    }

    private object AliasedGenerator {
      /**
       * Extracts a [[Generator]] expression, any names assigned by aliases to the outputs
       * and the outer flag. The outer flag is used when joining the generator output.
       * @param e the [[Expression]]
       * @return (the [[Generator]], seq of output names, outer flag)
       */
      def unapply(e: Expression): Option[(Generator, Seq[String], Boolean)] = e match {
        case Alias(GeneratorOuter(g: Generator), name) if g.resolved => Some((g, name :: Nil, true))
        case MultiAlias(GeneratorOuter(g: Generator), names) if g.resolved => Some((g, names, true))
        case Alias(g: Generator, name) if g.resolved => Some((g, name :: Nil, false))
        case MultiAlias(g: Generator, names) if g.resolved => Some((g, names, false))
        case _ => None
      }
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(GENERATOR), ruleId) {
      case Project(projectList, _) if projectList.exists(hasNestedGenerator) =>
        val nestedGenerator = projectList.find(hasNestedGenerator).get
        throw QueryCompilationErrors.nestedGeneratorError(trimAlias(nestedGenerator))

      case Project(projectList, _) if projectList.count(hasGenerator) > 1 =>
        val generators = projectList.filter(hasGenerator).map(trimAlias)
        throw QueryCompilationErrors.moreThanOneGeneratorError(generators, "SELECT")

      case Aggregate(_, aggList, _) if aggList.exists(hasNestedGenerator) =>
        val nestedGenerator = aggList.find(hasNestedGenerator).get
        throw QueryCompilationErrors.nestedGeneratorError(trimAlias(nestedGenerator))

      case Aggregate(_, aggList, _) if aggList.count(hasGenerator) > 1 =>
        val generators = aggList.filter(hasGenerator).map(trimAlias)
        throw QueryCompilationErrors.moreThanOneGeneratorError(generators, "aggregate")

      case agg @ Aggregate(groupList, aggList, child) if aggList.forall {
          case AliasedGenerator(_, _, _) => true
          case other => other.resolved
        } && aggList.exists(hasGenerator) =>
        // If generator in the aggregate list was visited, set the boolean flag true.
        var generatorVisited = false

        val projectExprs = Array.ofDim[NamedExpression](aggList.length)
        val newAggList = aggList
          .toIndexedSeq
          .map(trimNonTopLevelAliases)
          .zipWithIndex
          .flatMap {
            case (AliasedGenerator(generator, names, outer), idx) =>
              // It's a sanity check, this should not happen as the previous case will throw
              // exception earlier.
              assert(!generatorVisited, "More than one generator found in aggregate.")
              generatorVisited = true

              val newGenChildren: Seq[Expression] = generator.children.zipWithIndex.map {
                case (e, idx) => if (e.foldable) e else Alias(e, s"_gen_input_${idx}")()
              }
              val newGenerator = {
                val g = generator.withNewChildren(newGenChildren.map { e =>
                  if (e.foldable) e else e.asInstanceOf[Alias].toAttribute
                }).asInstanceOf[Generator]
                if (outer) GeneratorOuter(g) else g
              }
              val newAliasedGenerator = if (names.length == 1) {
                Alias(newGenerator, names(0))()
              } else {
                MultiAlias(newGenerator, names)
              }
              projectExprs(idx) = newAliasedGenerator
              newGenChildren.filter(!_.foldable).asInstanceOf[Seq[NamedExpression]]
            case (other, idx) =>
              projectExprs(idx) = other.toAttribute
              other :: Nil
          }

        val newAgg = Aggregate(groupList, newAggList, child)
        Project(projectExprs.toList, newAgg)

      case p @ Project(projectList, _) if hasAggFunctionInGenerator(projectList) =>
        // If a generator has any aggregate function, we need to apply the `GlobalAggregates` rule
        // first for replacing `Project` with `Aggregate`.
        p

      case p @ Project(projectList, child) =>
        val (resolvedGenerator, newProjectList) = projectList
          .map(trimNonTopLevelAliases)
          .foldLeft((None: Option[Generate], Nil: Seq[NamedExpression])) { (res, e) =>
            e match {
              case AliasedGenerator(generator, names, outer) if generator.childrenResolved =>
                // It's a sanity check, this should not happen as the previous case will throw
                // exception earlier.
                assert(res._1.isEmpty, "More than one generator found in SELECT.")

                val g = Generate(
                  generator,
                  unrequiredChildIndex = Nil,
                  outer = outer,
                  qualifier = None,
                  generatorOutput = ResolveGenerate.makeGeneratorOutput(generator, names),
                  child)

                (Some(g), res._2 ++ g.generatorOutput)
              case other =>
                (res._1, res._2 :+ other)
            }
          }

        if (resolvedGenerator.isDefined) {
          Project(newProjectList, resolvedGenerator.get)
        } else {
          p
        }

      case g @ Generate(GeneratorOuter(generator), _, _, _, _, _) =>
        g.copy(generator = generator, outer = true)

      case g: Generate => g

      case p if p.expressions.exists(hasGenerator) =>
        throw QueryCompilationErrors.generatorOutsideSelectError(p)
    }
  }

  /**
   * Rewrites table generating expressions that either need one or more of the following in order
   * to be resolved:
   *  - concrete attribute references for their output.
   *  - to be relocated from a SELECT clause (i.e. from  a [[Project]]) into a [[Generate]]).
   *
   * Names for the output [[Attribute]]s are extracted from [[Alias]] or [[MultiAlias]] expressions
   * that wrap the [[Generator]].
   */
  object ResolveGenerate extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(GENERATE), ruleId) {
      case g: Generate if !g.child.resolved || !g.generator.resolved => g
      case g: Generate if !g.resolved =>
        g.copy(generatorOutput = makeGeneratorOutput(g.generator, g.generatorOutput.map(_.name)))
    }

    /**
     * Construct the output attributes for a [[Generator]], given a list of names.  If the list of
     * names is empty names are assigned from field names in generator.
     */
    private[analysis] def makeGeneratorOutput(
        generator: Generator,
        names: Seq[String]): Seq[Attribute] = {
      val elementAttrs = generator.elementSchema.toAttributes

      if (names.length == elementAttrs.length) {
        names.zip(elementAttrs).map {
          case (name, attr) => attr.withName(name)
        }
      } else if (names.isEmpty) {
        elementAttrs
      } else {
        throw QueryCompilationErrors.aliasesNumberNotMatchUDTFOutputError(
          elementAttrs.size, names.mkString(","))
      }
    }
  }

  /**
   * Extracts [[WindowExpression]]s from the projectList of a [[Project]] operator and
   * aggregateExpressions of an [[Aggregate]] operator and creates individual [[Window]]
   * operators for every distinct [[WindowSpecDefinition]].
   *
   * This rule handles three cases:
   *  - A [[Project]] having [[WindowExpression]]s in its projectList;
   *  - An [[Aggregate]] having [[WindowExpression]]s in its aggregateExpressions.
   *  - A [[Filter]]->[[Aggregate]] pattern representing GROUP BY with a HAVING
   *    clause and the [[Aggregate]] has [[WindowExpression]]s in its aggregateExpressions.
   * Note: If there is a GROUP BY clause in the query, aggregations and corresponding
   * filters (expressions in the HAVING clause) should be evaluated before any
   * [[WindowExpression]]. If a query has SELECT DISTINCT, the DISTINCT part should be
   * evaluated after all [[WindowExpression]]s.
   *
   * For every case, the transformation works as follows:
   * 1. For a list of [[Expression]]s (a projectList or an aggregateExpressions), partitions
   *    it two lists of [[Expression]]s, one for all [[WindowExpression]]s and another for
   *    all regular expressions.
   * 2. For all [[WindowExpression]]s, groups them based on their [[WindowSpecDefinition]]s
   *    and [[WindowFunctionType]]s.
   * 3. For every distinct [[WindowSpecDefinition]] and [[WindowFunctionType]], creates a
   *    [[Window]] operator and inserts it into the plan tree.
   */
  object ExtractWindowExpressions extends Rule[LogicalPlan] {
    type Spec = (Seq[Expression], Seq[SortOrder], WindowFunctionType)

    private def hasWindowFunction(exprs: Seq[Expression]): Boolean =
      exprs.exists(hasWindowFunction)

    private def hasWindowFunction(expr: Expression): Boolean = {
      expr.exists {
        case window: WindowExpression => true
        case _ => false
      }
    }

    /**
     * From a Seq of [[NamedExpression]]s, extract expressions containing window expressions and
     * other regular expressions that do not contain any window expression. For example, for
     * `col1, Sum(col2 + col3) OVER (PARTITION BY col4 ORDER BY col5)`, we will extract
     * `col1`, `col2 + col3`, `col4`, and `col5` out and replace their appearances in
     * the window expression as attribute references. So, the first returned value will be
     * `[Sum(_w0) OVER (PARTITION BY _w1 ORDER BY _w2)]` and the second returned value will be
     * [col1, col2 + col3 as _w0, col4 as _w1, col5 as _w2].
     *
     * @return (seq of expressions containing at least one window expression,
     *          seq of non-window expressions)
     */
    private def extract(
        expressions: Seq[NamedExpression]): (Seq[NamedExpression], Seq[NamedExpression]) = {
      // First, we partition the input expressions to two part. For the first part,
      // every expression in it contain at least one WindowExpression.
      // Expressions in the second part do not have any WindowExpression.
      val (expressionsWithWindowFunctions, regularExpressions) =
        expressions.partition(hasWindowFunction)

      // Then, we need to extract those regular expressions used in the WindowExpression.
      // For example, when we have col1 - Sum(col2 + col3) OVER (PARTITION BY col4 ORDER BY col5),
      // we need to make sure that col1 to col5 are all projected from the child of the Window
      // operator.
      val extractedExprBuffer = new ArrayBuffer[NamedExpression]()
      def extractExpr(expr: Expression): Expression = expr match {
        case ne: NamedExpression =>
          // If a named expression is not in regularExpressions, add it to
          // extractedExprBuffer and replace it with an AttributeReference.
          val missingExpr =
            AttributeSet(Seq(expr)) -- (regularExpressions ++ extractedExprBuffer)
          if (missingExpr.nonEmpty) {
            extractedExprBuffer += ne
          }
          // alias will be cleaned in the rule CleanupAliases
          ne
        case e: Expression if e.foldable =>
          e // No need to create an attribute reference if it will be evaluated as a Literal.
        case e: Expression =>
          // For other expressions, we extract it and replace it with an AttributeReference (with
          // an internal column name, e.g. "_w0").
          val withName = Alias(e, s"_w${extractedExprBuffer.length}")()
          extractedExprBuffer += withName
          withName.toAttribute
      }

      // Now, we extract regular expressions from expressionsWithWindowFunctions
      // by using extractExpr.
      val seenWindowAggregates = new ArrayBuffer[AggregateExpression]
      val newExpressionsWithWindowFunctions = expressionsWithWindowFunctions.map {
        _.transform {
          // Extracts children expressions of a WindowFunction (input parameters of
          // a WindowFunction).
          case wf: WindowFunction =>
            val newChildren = wf.children.map(extractExpr)
            wf.withNewChildren(newChildren)

          // Extracts expressions from the partition spec and order spec.
          case wsc @ WindowSpecDefinition(partitionSpec, orderSpec, _) =>
            val newPartitionSpec = partitionSpec.map(extractExpr)
            val newOrderSpec = orderSpec.map { so =>
              val newChild = extractExpr(so.child)
              so.copy(child = newChild)
            }
            wsc.copy(partitionSpec = newPartitionSpec, orderSpec = newOrderSpec)

          case WindowExpression(ae: AggregateExpression, _) if ae.filter.isDefined =>
            throw QueryCompilationErrors.windowAggregateFunctionWithFilterNotSupportedError

          // Extract Windowed AggregateExpression
          case we @ WindowExpression(
              ae @ AggregateExpression(function, _, _, _, _),
              spec: WindowSpecDefinition) =>
            val newChildren = function.children.map(extractExpr)
            val newFunction = function.withNewChildren(newChildren).asInstanceOf[AggregateFunction]
            val newAgg = ae.copy(aggregateFunction = newFunction)
            seenWindowAggregates += newAgg
            WindowExpression(newAgg, spec)

          case AggregateExpression(aggFunc, _, _, _, _) if hasWindowFunction(aggFunc.children) =>
            throw QueryCompilationErrors.windowFunctionInsideAggregateFunctionNotAllowedError

          // Extracts AggregateExpression. For example, for SUM(x) - Sum(y) OVER (...),
          // we need to extract SUM(x).
          case agg: AggregateExpression if !seenWindowAggregates.contains(agg) =>
            val withName = Alias(agg, s"_w${extractedExprBuffer.length}")()
            extractedExprBuffer += withName
            withName.toAttribute

          // Extracts other attributes
          case attr: Attribute => extractExpr(attr)

        }.asInstanceOf[NamedExpression]
      }

      (newExpressionsWithWindowFunctions, regularExpressions ++ extractedExprBuffer)
    } // end of extract

    /**
     * Adds operators for Window Expressions. Every Window operator handles a single Window Spec.
     */
    private def addWindow(
        expressionsWithWindowFunctions: Seq[NamedExpression],
        child: LogicalPlan): LogicalPlan = {
      // First, we need to extract all WindowExpressions from expressionsWithWindowFunctions
      // and put those extracted WindowExpressions to extractedWindowExprBuffer.
      // This step is needed because it is possible that an expression contains multiple
      // WindowExpressions with different Window Specs.
      // After extracting WindowExpressions, we need to construct a project list to generate
      // expressionsWithWindowFunctions based on extractedWindowExprBuffer.
      // For example, for "sum(a) over (...) / sum(b) over (...)", we will first extract
      // "sum(a) over (...)" and "sum(b) over (...)" out, and assign "_we0" as the alias to
      // "sum(a) over (...)" and "_we1" as the alias to "sum(b) over (...)".
      // Then, the projectList will be [_we0/_we1].
      val extractedWindowExprBuffer = new ArrayBuffer[NamedExpression]()
      val newExpressionsWithWindowFunctions = expressionsWithWindowFunctions.map {
        // We need to use transformDown because we want to trigger
        // "case alias @ Alias(window: WindowExpression, _)" first.
        _.transformDown {
          case alias @ Alias(window: WindowExpression, _) =>
            // If a WindowExpression has an assigned alias, just use it.
            extractedWindowExprBuffer += alias
            alias.toAttribute
          case window: WindowExpression =>
            // If there is no alias assigned to the WindowExpressions. We create an
            // internal column.
            val withName = Alias(window, s"_we${extractedWindowExprBuffer.length}")()
            extractedWindowExprBuffer += withName
            withName.toAttribute
        }.asInstanceOf[NamedExpression]
      }

      // SPARK-32616: Use a linked hash map to maintains the insertion order of the Window
      // operators, so the query with multiple Window operators can have the determined plan.
      val groupedWindowExpressions = mutable.LinkedHashMap.empty[Spec, ArrayBuffer[NamedExpression]]
      // Second, we group extractedWindowExprBuffer based on their Partition and Order Specs.
      extractedWindowExprBuffer.foreach { expr =>
        val distinctWindowSpec = expr.collect {
          case window: WindowExpression => window.windowSpec
        }.distinct

        // We do a final check and see if we only have a single Window Spec defined in an
        // expressions.
        if (distinctWindowSpec.isEmpty) {
          throw QueryCompilationErrors.expressionWithoutWindowExpressionError(expr)
        } else if (distinctWindowSpec.length > 1) {
          // newExpressionsWithWindowFunctions only have expressions with a single
          // WindowExpression. If we reach here, we have a bug.
          throw QueryCompilationErrors.expressionWithMultiWindowExpressionsError(
            expr, distinctWindowSpec)
        } else {
          val spec = distinctWindowSpec.head
          val specKey = (spec.partitionSpec, spec.orderSpec, WindowFunctionType.functionType(expr))
          val windowExprs = groupedWindowExpressions
            .getOrElseUpdate(specKey, new ArrayBuffer[NamedExpression])
          windowExprs += expr
        }
      }

      // Third, we aggregate them by adding each Window operator for each Window Spec and then
      // setting this to the child of the next Window operator.
      val windowOps =
        groupedWindowExpressions.foldLeft(child) {
          case (last, ((partitionSpec, orderSpec, _), windowExpressions)) =>
            Window(windowExpressions.toSeq, partitionSpec, orderSpec, last)
        }

      // Finally, we create a Project to output windowOps's output
      // newExpressionsWithWindowFunctions.
      Project(windowOps.output ++ newExpressionsWithWindowFunctions, windowOps)
    } // end of addWindow

    // We have to use transformDown at here to make sure the rule of
    // "Aggregate with Having clause" will be triggered.
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsDownWithPruning(
      _.containsPattern(WINDOW_EXPRESSION), ruleId) {

      case Filter(condition, _) if hasWindowFunction(condition) =>
        throw QueryCompilationErrors.windowFunctionNotAllowedError("WHERE")

      case UnresolvedHaving(condition, _) if hasWindowFunction(condition) =>
        throw QueryCompilationErrors.windowFunctionNotAllowedError("HAVING")

      // Aggregate with Having clause. This rule works with an unresolved Aggregate because
      // a resolved Aggregate will not have Window Functions.
      case f @ UnresolvedHaving(condition, a @ Aggregate(groupingExprs, aggregateExprs, child))
        if child.resolved &&
          hasWindowFunction(aggregateExprs) &&
          a.expressions.forall(_.resolved) =>
        val (windowExpressions, aggregateExpressions) = extract(aggregateExprs)
        // Create an Aggregate operator to evaluate aggregation functions.
        val withAggregate = Aggregate(groupingExprs, aggregateExpressions, child)
        // Add a Filter operator for conditions in the Having clause.
        val withFilter = Filter(condition, withAggregate)
        val withWindow = addWindow(windowExpressions, withFilter)

        // Finally, generate output columns according to the original projectList.
        val finalProjectList = aggregateExprs.map(_.toAttribute)
        Project(finalProjectList, withWindow)

      case p: LogicalPlan if !p.childrenResolved => p

      // Aggregate without Having clause.
      case a @ Aggregate(groupingExprs, aggregateExprs, child)
        if hasWindowFunction(aggregateExprs) &&
          a.expressions.forall(_.resolved) =>
        val (windowExpressions, aggregateExpressions) = extract(aggregateExprs)
        // Create an Aggregate operator to evaluate aggregation functions.
        val withAggregate = Aggregate(groupingExprs, aggregateExpressions, child)
        // Add Window operators.
        val withWindow = addWindow(windowExpressions, withAggregate)

        // Finally, generate output columns according to the original projectList.
        val finalProjectList = aggregateExprs.map(_.toAttribute)
        Project(finalProjectList, withWindow)

      // We only extract Window Expressions after all expressions of the Project
      // have been resolved.
      case p @ Project(projectList, child)
        if hasWindowFunction(projectList) && p.expressions.forall(_.resolved) =>
        val (windowExpressions, regularExpressions) = extract(projectList.toIndexedSeq)
        // We add a project to get all needed expressions for window expressions from the child
        // of the original Project operator.
        val withProject = Project(regularExpressions, child)
        // Add Window operators.
        val withWindow = addWindow(windowExpressions, withProject)

        // Finally, generate output columns according to the original projectList.
        val finalProjectList = projectList.map(_.toAttribute)
        Project(finalProjectList, withWindow)
    }
  }

  /**
   * Set the seed for random number generation.
   */
  object ResolveRandomSeed extends Rule[LogicalPlan] {
    private lazy val random = new Random()

    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(EXPRESSION_WITH_RANDOM_SEED), ruleId) {
      case p if p.resolved => p
      case p => p.transformExpressionsUpWithPruning(
        _.containsPattern(EXPRESSION_WITH_RANDOM_SEED), ruleId) {
        case e: ExpressionWithRandomSeed if e.seedExpression == UnresolvedSeed =>
          e.withNewSeed(random.nextLong())
      }
    }
  }

  /**
   * Correctly handle null primitive inputs for UDF by adding extra [[If]] expression to do the
   * null check.  When user defines a UDF with primitive parameters, there is no way to tell if the
   * primitive parameter is null or not, so here we assume the primitive input is null-propagatable
   * and we should return null if the input is null.
   */
  object HandleNullInputsForUDF extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(SCALA_UDF)) {
      case p if !p.resolved => p // Skip unresolved nodes.

      case p => p.transformExpressionsUpWithPruning(_.containsPattern(SCALA_UDF)) {

        case udf: ScalaUDF if udf.inputPrimitives.contains(true) =>
          // Otherwise, add special handling of null for fields that can't accept null.
          // The result of operations like this, when passed null, is generally to return null.
          assert(udf.inputPrimitives.length == udf.children.length)

          val inputPrimitivesPair = udf.inputPrimitives.zip(udf.children)
          val inputNullCheck = inputPrimitivesPair.collect {
            case (isPrimitive, input) if isPrimitive && input.nullable =>
              IsNull(input)
          }.reduceLeftOption[Expression](Or)

          if (inputNullCheck.isDefined) {
            // Once we add an `If` check above the udf, it is safe to mark those checked inputs
            // as null-safe (i.e., wrap with `KnownNotNull`), because the null-returning
            // branch of `If` will be called if any of these checked inputs is null. Thus we can
            // prevent this rule from being applied repeatedly.
            val newInputs = inputPrimitivesPair.map {
              case (isPrimitive, input) =>
                if (isPrimitive && input.nullable) {
                  KnownNotNull(input)
                } else {
                  input
                }
            }
            val newUDF = udf.copy(children = newInputs)
            If(inputNullCheck.get, Literal.create(null, udf.dataType), newUDF)
          } else {
            udf
          }
      }
    }
  }

  /**
   * Resolve the encoders for the UDF by explicitly given the attributes. We give the
   * attributes explicitly in order to handle the case where the data type of the input
   * value is not the same with the internal schema of the encoder, which could cause
   * data loss. For example, the encoder should not cast the input value to Decimal(38, 18)
   * if the actual data type is Decimal(30, 0).
   *
   * The resolved encoders then will be used to deserialize the internal row to Scala value.
   */
  object ResolveEncodersInUDF extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(SCALA_UDF), ruleId) {
      case p if !p.resolved => p // Skip unresolved nodes.

      case p => p.transformExpressionsUpWithPruning(_.containsPattern(SCALA_UDF), ruleId) {

        case udf: ScalaUDF if udf.inputEncoders.nonEmpty =>
          val boundEncoders = udf.inputEncoders.zipWithIndex.map { case (encOpt, i) =>
            val dataType = udf.children(i).dataType
            encOpt.map { enc =>
              val attrs = if (enc.isSerializedAsStructForTopLevel) {
                dataType.asInstanceOf[StructType].toAttributes
              } else {
                // the field name doesn't matter here, so we use
                // a simple literal to avoid any overhead
                new StructType().add("input", dataType).toAttributes
              }
              enc.resolveAndBind(attrs)
            }
          }
          udf.copy(inputEncoders = boundEncoders)
      }
    }
  }

  /**
   * Check and add proper window frames for all window functions.
   */
  object ResolveWindowFrame extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveExpressionsWithPruning(
      _.containsPattern(WINDOW_EXPRESSION), ruleId) {
      case WindowExpression(wf: FrameLessOffsetWindowFunction,
        WindowSpecDefinition(_, _, f: SpecifiedWindowFrame)) if wf.frame != f =>
        throw QueryCompilationErrors.cannotSpecifyWindowFrameError(wf.prettyName)
      case WindowExpression(wf: WindowFunction, WindowSpecDefinition(_, _, f: SpecifiedWindowFrame))
          if wf.frame != UnspecifiedFrame && wf.frame != f =>
        throw QueryCompilationErrors.windowFrameNotMatchRequiredFrameError(f, wf.frame)
      case WindowExpression(wf: WindowFunction, s @ WindowSpecDefinition(_, _, UnspecifiedFrame))
          if wf.frame != UnspecifiedFrame =>
        WindowExpression(wf, s.copy(frameSpecification = wf.frame))
      case we @ WindowExpression(e, s @ WindowSpecDefinition(_, o, UnspecifiedFrame))
          if e.resolved =>
        val frame = if (o.nonEmpty) {
          SpecifiedWindowFrame(RangeFrame, UnboundedPreceding, CurrentRow)
        } else {
          SpecifiedWindowFrame(RowFrame, UnboundedPreceding, UnboundedFollowing)
        }
        we.copy(windowSpec = s.copy(frameSpecification = frame))
    }
  }

  /**
   * Check and add order to [[AggregateWindowFunction]]s.
   */
  object ResolveWindowOrder extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveExpressionsWithPruning(
      _.containsPattern(WINDOW_EXPRESSION), ruleId) {
      case WindowExpression(wf: WindowFunction, spec) if spec.orderSpec.isEmpty =>
        throw QueryCompilationErrors.windowFunctionWithWindowFrameNotOrderedError(wf)
      case WindowExpression(rank: RankLike, spec) if spec.resolved =>
        val order = spec.orderSpec.map(_.child)
        WindowExpression(rank.withOrder(order), spec)
    }
  }

  /**
   * Removes natural or using joins by calculating output columns based on output from two sides,
   * Then apply a Project on a normal Join to eliminate natural or using join.
   */
  object ResolveNaturalAndUsingJoin extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(NATURAL_LIKE_JOIN), ruleId) {
      case j @ Join(left, right, UsingJoin(joinType, usingCols), _, hint)
          if left.resolved && right.resolved && j.duplicateResolved =>
        commonNaturalJoinProcessing(left, right, joinType, usingCols, None, hint)
      case j @ Join(left, right, NaturalJoin(joinType), condition, hint)
          if j.resolvedExceptNatural =>
        // find common column names from both sides
        val joinNames = left.output.map(_.name).intersect(right.output.map(_.name))
        commonNaturalJoinProcessing(left, right, joinType, joinNames, condition, hint)
    }
  }

  /**
   * Resolves columns of an output table from the data in a logical plan. This rule will:
   *
   * - Reorder columns when the write is by name
   * - Insert casts when data types do not match
   * - Insert aliases when column names do not match
   * - Detect plans that are not compatible with the output table and throw AnalysisException
   */
  object ResolveOutputRelation extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
      _.containsPattern(COMMAND), ruleId) {
      case v2Write: V2WriteCommand
          if v2Write.table.resolved && v2Write.query.resolved && !v2Write.outputResolved =>
        validateStoreAssignmentPolicy()
        val projection = TableOutputResolver.resolveOutputColumns(
          v2Write.table.name, v2Write.table.output, v2Write.query, v2Write.isByName, conf)
        if (projection != v2Write.query) {
          val cleanedTable = v2Write.table match {
            case r: DataSourceV2Relation =>
              r.copy(output = r.output.map(CharVarcharUtils.cleanAttrMetadata))
            case other => other
          }
          v2Write.withNewQuery(projection).withNewTable(cleanedTable)
        } else {
          v2Write
        }

      case u: UpdateTable if !u.skipSchemaResolution && u.resolved =>
        resolveAssignments(u)

      case m: MergeIntoTable if !m.skipSchemaResolution && m.resolved =>
        resolveAssignments(m)
    }

    private def resolveAssignments(p: LogicalPlan): LogicalPlan = {
      p.transformExpressions {
        case assignment: Assignment =>
          val nullHandled = if (!assignment.key.nullable && assignment.value.nullable) {
            AssertNotNull(assignment.value)
          } else {
            assignment.value
          }
          val casted = if (assignment.key.dataType != nullHandled.dataType) {
            val cast = Cast(nullHandled, assignment.key.dataType, ansiEnabled = true)
            cast.setTagValue(Cast.BY_TABLE_INSERTION, ())
            cast
          } else {
            nullHandled
          }
          val rawKeyType = assignment.key.transform {
            case a: AttributeReference =>
              CharVarcharUtils.getRawType(a.metadata).map(a.withDataType).getOrElse(a)
          }.dataType
          val finalValue = if (CharVarcharUtils.hasCharVarchar(rawKeyType)) {
            CharVarcharUtils.stringLengthCheck(casted, rawKeyType)
          } else {
            casted
          }
          val cleanedKey = assignment.key.transform {
            case a: AttributeReference => CharVarcharUtils.cleanAttrMetadata(a)
          }
          Assignment(cleanedKey, finalValue)
      }
    }
  }

  object ResolveUserSpecifiedColumns extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
      AlwaysProcess.fn, ruleId) {
      case i: InsertIntoStatement if i.table.resolved && i.query.resolved &&
          i.userSpecifiedCols.nonEmpty =>
        val resolved = resolveUserSpecifiedColumns(i)
        val projection = addColumnListOnQuery(i.table.output, resolved, i.query)
        i.copy(userSpecifiedCols = Nil, query = projection)
    }

    private def resolveUserSpecifiedColumns(i: InsertIntoStatement): Seq[NamedExpression] = {
      SchemaUtils.checkColumnNameDuplication(
        i.userSpecifiedCols, "in the column list", resolver)

      i.userSpecifiedCols.map { col =>
        i.table.resolve(Seq(col), resolver).getOrElse {
          val candidates = i.table.output.map(_.qualifiedName)
          val orderedCandidates = StringUtils.orderStringsBySimilarity(col, candidates)
          throw QueryCompilationErrors
            .unresolvedAttributeError("UNRESOLVED_COLUMN", col, orderedCandidates, i.origin)
        }
      }
    }

    private def addColumnListOnQuery(
        tableOutput: Seq[Attribute],
        cols: Seq[NamedExpression],
        query: LogicalPlan): LogicalPlan = {
      if (cols.size != query.output.size) {
        throw QueryCompilationErrors.writeTableWithMismatchedColumnsError(
          cols.size, query.output.size, query)
      }
      val nameToQueryExpr = CUtils.toMap(cols, query.output)
      // Static partition columns in the table output should not appear in the column list
      // they will be handled in another rule ResolveInsertInto
      val reordered = tableOutput.flatMap { nameToQueryExpr.get(_).orElse(None) }
      if (reordered == query.output) {
        query
      } else {
        Project(reordered, query)
      }
    }
  }

  private def validateStoreAssignmentPolicy(): Unit = {
    // SPARK-28730: LEGACY store assignment policy is disallowed in data source v2.
    if (conf.storeAssignmentPolicy == StoreAssignmentPolicy.LEGACY) {
      throw QueryCompilationErrors.legacyStoreAssignmentPolicyError()
    }
  }

  private def commonNaturalJoinProcessing(
      left: LogicalPlan,
      right: LogicalPlan,
      joinType: JoinType,
      joinNames: Seq[String],
      condition: Option[Expression],
      hint: JoinHint): LogicalPlan = {
    import org.apache.spark.sql.catalyst.util._

    val leftKeys = joinNames.map { keyName =>
      left.output.find(attr => resolver(attr.name, keyName)).getOrElse {
        throw QueryCompilationErrors.unresolvedUsingColForJoinError(keyName, left, "left")
      }
    }
    val rightKeys = joinNames.map { keyName =>
      right.output.find(attr => resolver(attr.name, keyName)).getOrElse {
        throw QueryCompilationErrors.unresolvedUsingColForJoinError(keyName, right, "right")
      }
    }
    val joinPairs = leftKeys.zip(rightKeys)

    val newCondition = (condition ++ joinPairs.map(EqualTo.tupled)).reduceOption(And)

    // columns not in joinPairs
    val lUniqueOutput = left.output.filterNot(att => leftKeys.contains(att))
    val rUniqueOutput = right.output.filterNot(att => rightKeys.contains(att))

    // the output list looks like: join keys, columns from left, columns from right
    val (projectList, hiddenList) = joinType match {
      case LeftOuter =>
        (leftKeys ++ lUniqueOutput ++ rUniqueOutput.map(_.withNullability(true)), rightKeys)
      case LeftExistence(_) =>
        (leftKeys ++ lUniqueOutput, Seq.empty)
      case RightOuter =>
        (rightKeys ++ lUniqueOutput.map(_.withNullability(true)) ++ rUniqueOutput, leftKeys)
      case FullOuter =>
        // in full outer join, joinCols should be non-null if there is.
        val joinedCols = joinPairs.map { case (l, r) => Alias(Coalesce(Seq(l, r)), l.name)() }
        (joinedCols ++
          lUniqueOutput.map(_.withNullability(true)) ++
          rUniqueOutput.map(_.withNullability(true)),
          leftKeys ++ rightKeys)
      case _ : InnerLike =>
        (leftKeys ++ lUniqueOutput ++ rUniqueOutput, rightKeys)
      case _ =>
        throw QueryExecutionErrors.unsupportedNaturalJoinTypeError(joinType)
    }
    // use Project to hide duplicated common keys
    // propagate hidden columns from nested USING/NATURAL JOINs
    val project = Project(projectList, Join(left, right, joinType, newCondition, hint))
    project.setTagValue(
      Project.hiddenOutputTag,
      hiddenList.map(_.markAsQualifiedAccessOnly()) ++
        project.child.metadataOutput.filter(_.qualifiedAccessOnly))
    project
  }

  /**
   * Replaces [[UnresolvedDeserializer]] with the deserialization expression that has been resolved
   * to the given input attributes.
   */
  object ResolveDeserializer extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(UNRESOLVED_DESERIALIZER), ruleId) {
      case p if !p.childrenResolved => p
      case p if p.resolved => p

      case p => p.transformExpressionsWithPruning(
        _.containsPattern(UNRESOLVED_DESERIALIZER), ruleId) {
        case UnresolvedDeserializer(deserializer, inputAttributes) =>
          val inputs = if (inputAttributes.isEmpty) {
            p.children.flatMap(_.output)
          } else {
            inputAttributes
          }

          validateTopLevelTupleFields(deserializer, inputs)
          val resolved = resolveExpressionByPlanOutput(
            deserializer, LocalRelation(inputs), throws = true)
          val result = resolved transformDown {
            case UnresolvedMapObjects(func, inputData, cls) if inputData.resolved =>
              inputData.dataType match {
                case ArrayType(et, cn) =>
                  MapObjects(func, inputData, et, cn, cls) transformUp {
                    case UnresolvedExtractValue(child, fieldName) if child.resolved =>
                      ExtractValue(child, fieldName, resolver)
                  }
                case other =>
                  throw QueryCompilationErrors.dataTypeMismatchForDeserializerError(other,
                    "array")
              }
            case u: UnresolvedCatalystToExternalMap if u.child.resolved =>
              u.child.dataType match {
                case _: MapType =>
                  CatalystToExternalMap(u) transformUp {
                    case UnresolvedExtractValue(child, fieldName) if child.resolved =>
                      ExtractValue(child, fieldName, resolver)
                  }
                case other =>
                  throw QueryCompilationErrors.dataTypeMismatchForDeserializerError(other, "map")
              }
          }
          validateNestedTupleFields(result)
          result
      }
    }

    private def fail(schema: StructType, maxOrdinal: Int): Unit = {
      throw QueryCompilationErrors.fieldNumberMismatchForDeserializerError(schema, maxOrdinal)
    }

    /**
     * For each top-level Tuple field, we use [[GetColumnByOrdinal]] to get its corresponding column
     * by position.  However, the actual number of columns may be different from the number of Tuple
     * fields.  This method is used to check the number of columns and fields, and throw an
     * exception if they do not match.
     */
    private def validateTopLevelTupleFields(
        deserializer: Expression, inputs: Seq[Attribute]): Unit = {
      val ordinals = deserializer.collect {
        case GetColumnByOrdinal(ordinal, _) => ordinal
      }.distinct.sorted

      if (ordinals.nonEmpty && ordinals != inputs.indices) {
        fail(inputs.toStructType, ordinals.last)
      }
    }

    /**
     * For each nested Tuple field, we use [[GetStructField]] to get its corresponding struct field
     * by position.  However, the actual number of struct fields may be different from the number
     * of nested Tuple fields.  This method is used to check the number of struct fields and nested
     * Tuple fields, and throw an exception if they do not match.
     */
    private def validateNestedTupleFields(deserializer: Expression): Unit = {
      val structChildToOrdinals = deserializer
        // There are 2 kinds of `GetStructField`:
        //   1. resolved from `UnresolvedExtractValue`, and it will have a `name` property.
        //   2. created when we build deserializer expression for nested tuple, no `name` property.
        // Here we want to validate the ordinals of nested tuple, so we should only catch
        // `GetStructField` without the name property.
        .collect { case g: GetStructField if g.name.isEmpty => g }
        .groupBy(_.child)
        .mapValues(_.map(_.ordinal).distinct.sorted)

      structChildToOrdinals.foreach { case (expr, ordinals) =>
        val schema = expr.dataType.asInstanceOf[StructType]
        if (ordinals != schema.indices) {
          fail(schema, ordinals.last)
        }
      }
    }
  }

  /**
   * Resolves [[NewInstance]] by finding and adding the outer scope to it if the object being
   * constructed is an inner class.
   */
  object ResolveNewInstance extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(NEW_INSTANCE), ruleId) {
      case p if !p.childrenResolved => p
      case p if p.resolved => p

      case p => p.transformExpressionsUpWithPruning(_.containsPattern(NEW_INSTANCE), ruleId) {
        case n: NewInstance if n.childrenResolved && !n.resolved =>
          val outer = OuterScopes.getOuterScope(n.cls)
          if (outer == null) {
            throw QueryCompilationErrors.outerScopeFailureForNewInstanceError(n.cls.getName)
          }
          n.copy(outerPointer = Some(outer))
      }
    }
  }

  /**
   * Replace the [[UpCast]] expression by [[Cast]], and throw exceptions if the cast may truncate.
   */
  object ResolveUpCast extends Rule[LogicalPlan] {
    private def fail(from: Expression, to: DataType, walkedTypePath: Seq[String]) = {
      val fromStr = from match {
        case l: LambdaVariable => "array element"
        case e => e.sql
      }
      throw QueryCompilationErrors.upCastFailureError(fromStr, from, to, walkedTypePath)
    }

    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
      _.containsPattern(UP_CAST), ruleId) {
      case p if !p.childrenResolved => p
      case p if p.resolved => p

      case p => p.transformExpressionsWithPruning(_.containsPattern(UP_CAST), ruleId) {
        case u @ UpCast(child, _, _) if !child.resolved => u

        case UpCast(_, target, _) if target != DecimalType && !target.isInstanceOf[DataType] =>
          throw new IllegalStateException(
            s"UpCast only supports DecimalType as AbstractDataType yet, but got: $target")

        case UpCast(child, target, walkedTypePath) if target == DecimalType
          && child.dataType.isInstanceOf[DecimalType] =>
          assert(walkedTypePath.nonEmpty,
            "object DecimalType should only be used inside ExpressionEncoder")

          // SPARK-31750: if we want to upcast to the general decimal type, and the `child` is
          // already decimal type, we can remove the `Upcast` and accept any precision/scale.
          // This can happen for cases like `spark.read.parquet("/tmp/file").as[BigDecimal]`.
          child

        case UpCast(child, target: AtomicType, _)
            if conf.getConf(SQLConf.LEGACY_LOOSE_UPCAST) &&
              child.dataType == StringType =>
          Cast(child, target.asNullable)

        case u @ UpCast(child, _, walkedTypePath) if !Cast.canUpCast(child.dataType, u.dataType) =>
          fail(child, u.dataType, walkedTypePath)

        case u @ UpCast(child, _, _) => Cast(child, u.dataType)
      }
    }
  }

  /**
   * Rule to resolve, normalize and rewrite field names based on case sensitivity for commands.
   */
  object ResolveFieldNameAndPosition extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUp {
      case cmd: CreateIndex if cmd.table.resolved &&
          cmd.columns.exists(_._1.isInstanceOf[UnresolvedFieldName]) =>
        val table = cmd.table.asInstanceOf[ResolvedTable]
        cmd.copy(columns = cmd.columns.map {
          case (u: UnresolvedFieldName, prop) => resolveFieldNames(table, u.name, u) -> prop
          case other => other
        })

      case a: DropColumns if a.table.resolved && hasUnresolvedFieldName(a) && a.ifExists =>
        // for DropColumn with IF EXISTS clause, we should resolve and ignore missing column errors
        val table = a.table.asInstanceOf[ResolvedTable]
        val columnsToDrop = a.columnsToDrop
        a.copy(columnsToDrop = columnsToDrop.flatMap(c => resolveFieldNamesOpt(table, c.name, c)))

      case a: AlterTableCommand if a.table.resolved && hasUnresolvedFieldName(a) =>
        val table = a.table.asInstanceOf[ResolvedTable]
        a.transformExpressions {
          case u: UnresolvedFieldName => resolveFieldNames(table, u.name, u)
        }

      case a @ AddColumns(r: ResolvedTable, cols) if !a.resolved =>
        // 'colsToAdd' keeps track of new columns being added. It stores a mapping from a
        // normalized parent name of fields to field names that belong to the parent.
        // For example, if we add columns "a.b.c", "a.b.d", and "a.c", 'colsToAdd' will become
        // Map(Seq("a", "b") -> Seq("c", "d"), Seq("a") -> Seq("c")).
        val colsToAdd = mutable.Map.empty[Seq[String], Seq[String]]
        def resolvePosition(
            col: QualifiedColType,
            parentSchema: StructType,
            resolvedParentName: Seq[String]): Option[FieldPosition] = {
          val fieldsAdded = colsToAdd.getOrElse(resolvedParentName, Nil)
          val resolvedPosition = col.position.map {
            case u: UnresolvedFieldPosition => u.position match {
              case after: After =>
                val allFields = parentSchema.fieldNames ++ fieldsAdded
                allFields.find(n => conf.resolver(n, after.column())) match {
                  case Some(colName) =>
                    ResolvedFieldPosition(ColumnPosition.after(colName))
                  case None =>
                    val name = if (resolvedParentName.isEmpty) "root" else resolvedParentName.quoted
                    throw QueryCompilationErrors.referenceColNotFoundForAlterTableChangesError(
                      after, name)
                }
              case _ => ResolvedFieldPosition(u.position)
            }
            case resolved => resolved
          }
          colsToAdd(resolvedParentName) = fieldsAdded :+ col.colName
          resolvedPosition
        }
        val schema = r.table.schema
        val resolvedCols = cols.map { col =>
          col.path match {
            case Some(parent: UnresolvedFieldName) =>
              // Adding a nested field, need to resolve the parent column and position.
              val resolvedParent = resolveFieldNames(r, parent.name, parent)
              val parentSchema = resolvedParent.field.dataType match {
                case s: StructType => s
                case _ => throw QueryCompilationErrors.invalidFieldName(
                  col.name, parent.name, parent.origin)
              }
              val resolvedPosition = resolvePosition(col, parentSchema, resolvedParent.name)
              col.copy(path = Some(resolvedParent), position = resolvedPosition)
            case _ =>
              // Adding to the root. Just need to resolve position.
              val resolvedPosition = resolvePosition(col, schema, Nil)
              col.copy(position = resolvedPosition)
          }
        }
        val resolved = a.copy(columnsToAdd = resolvedCols)
        resolved.copyTagsFrom(a)
        resolved

      case a @ AlterColumn(
          table: ResolvedTable, ResolvedFieldName(path, field), dataType, _, _, position, _) =>
        val newDataType = dataType.flatMap { dt =>
          // Hive style syntax provides the column type, even if it may not have changed.
          val existing = CharVarcharUtils.getRawType(field.metadata).getOrElse(field.dataType)
          if (existing == dt) None else Some(dt)
        }
        val newPosition = position map {
          case u @ UnresolvedFieldPosition(after: After) =>
            // TODO: since the field name is already resolved, it's more efficient if
            //       `ResolvedFieldName` carries the parent struct and we resolve column position
            //       based on the parent struct, instead of re-resolving the entire column path.
            val resolved = resolveFieldNames(table, path :+ after.column(), u)
            ResolvedFieldPosition(ColumnPosition.after(resolved.field.name))
          case u: UnresolvedFieldPosition => ResolvedFieldPosition(u.position)
          case other => other
        }
        val resolved = a.copy(dataType = newDataType, position = newPosition)
        resolved.copyTagsFrom(a)
        resolved
    }

    /**
     * Returns the resolved field name if the field can be resolved, returns None if the column is
     * not found. An error will be thrown in CheckAnalysis for columns that can't be resolved.
     */
    private def resolveFieldNames(
        table: ResolvedTable,
        fieldName: Seq[String],
        context: Expression): ResolvedFieldName = {
      resolveFieldNamesOpt(table, fieldName, context)
        .getOrElse(throw QueryCompilationErrors.missingFieldError(fieldName, table, context.origin))
    }

    private def resolveFieldNamesOpt(
        table: ResolvedTable,
        fieldName: Seq[String],
        context: Expression): Option[ResolvedFieldName] = {
      table.schema.findNestedField(
        fieldName, includeCollections = true, conf.resolver, context.origin
      ).map {
        case (path, field) => ResolvedFieldName(path, field)
      }
    }

    private def hasUnresolvedFieldName(a: AlterTableCommand): Boolean = {
      a.expressions.exists(_.exists(_.isInstanceOf[UnresolvedFieldName]))
    }
  }

  /**
   * A rule that marks a command as analyzed so that its children are removed to avoid
   * being optimized. This rule should run after all other analysis rules are run.
   */
  object HandleAnalysisOnlyCommand extends Rule[LogicalPlan] {
    override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
      _.containsPattern(COMMAND)) {
      case c: AnalysisOnlyCommand if c.resolved =>
        checkAnalysis(c)
        c.markAsAnalyzed(AnalysisContext.get)
    }
  }
}

/**
 * Removes [[SubqueryAlias]] operators from the plan. Subqueries are only required to provide
 * scoping information for attributes and can be removed once analysis is complete.
 */
object EliminateSubqueryAliases extends Rule[LogicalPlan] {
  // This is also called in the beginning of the optimization phase, and as a result
  // is using transformUp rather than resolveOperators.
  def apply(plan: LogicalPlan): LogicalPlan = AnalysisHelper.allowInvokingTransformsInAnalyzer {
    plan.transformUpWithPruning(AlwaysProcess.fn, ruleId) {
      case SubqueryAlias(_, child) => child
    }
  }
}

/**
 * Removes [[Union]] operators from the plan if it just has one child.
 */
object EliminateUnions extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
    _.containsPattern(UNION), ruleId) {
    case u: Union if u.children.size == 1 => u.children.head
  }
}

/**
 * Cleans up unnecessary Aliases inside the plan. Basically we only need Alias as a top level
 * expression in Project(project list) or Aggregate(aggregate expressions) or
 * Window(window expressions). Notice that if an expression has other expression parameters which
 * are not in its `children`, e.g. `RuntimeReplaceable`, the transformation for Aliases in this
 * rule can't work for those parameters.
 */
object CleanupAliases extends Rule[LogicalPlan] with AliasHelper {
  override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
    // trimNonTopLevelAliases can transform Alias and MultiAlias.
    _.containsAnyPattern(ALIAS, MULTI_ALIAS)) {
    case Project(projectList, child) =>
      val cleanedProjectList = projectList.map(trimNonTopLevelAliases)
      Project(cleanedProjectList, child)

    case Aggregate(grouping, aggs, child) =>
      val cleanedAggs = aggs.map(trimNonTopLevelAliases)
      Aggregate(grouping.map(trimAliases), cleanedAggs, child)

    case Window(windowExprs, partitionSpec, orderSpec, child) =>
      val cleanedWindowExprs = windowExprs.map(trimNonTopLevelAliases)
      Window(cleanedWindowExprs, partitionSpec.map(trimAliases),
        orderSpec.map(trimAliases(_).asInstanceOf[SortOrder]), child)

    case CollectMetrics(name, metrics, child) =>
      val cleanedMetrics = metrics.map(trimNonTopLevelAliases)
      CollectMetrics(name, cleanedMetrics, child)

    case Unpivot(ids, values, aliases, variableColumnName, valueColumnNames, child) =>
      val cleanedIds = ids.map(_.map(trimNonTopLevelAliases))
      val cleanedValues = values.map(_.map(_.map(trimNonTopLevelAliases)))
      Unpivot(
        cleanedIds,
        cleanedValues,
        aliases,
        variableColumnName,
        valueColumnNames,
        child)

    // Operators that operate on objects should only have expressions from encoders, which should
    // never have extra aliases.
    case o: ObjectConsumer => o
    case o: ObjectProducer => o
    case a: AppendColumns => a

    case other =>
      other.transformExpressionsDownWithPruning(_.containsAnyPattern(ALIAS, MULTI_ALIAS)) {
        case Alias(child, _) => child
      }
  }
}

/**
 * Ignore event time watermark in batch query, which is only supported in Structured Streaming.
 * TODO: add this rule into analyzer rule list.
 */
object EliminateEventTimeWatermark extends Rule[LogicalPlan] {
  override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsWithPruning(
    _.containsPattern(EVENT_TIME_WATERMARK)) {
    case EventTimeWatermark(_, _, child) if !child.isStreaming => child
  }
}

/**
 * Maps a time column to multiple time windows using the Expand operator. Since it's non-trivial to
 * figure out how many windows a time column can map to, we over-estimate the number of windows and
 * filter out the rows where the time column is not inside the time window.
 */
object TimeWindowing extends Rule[LogicalPlan] {
  import org.apache.spark.sql.catalyst.dsl.expressions._

  private final val WINDOW_COL_NAME = "window"
  private final val WINDOW_START = "start"
  private final val WINDOW_END = "end"

  /**
   * Generates the logical plan for generating window ranges on a timestamp column. Without
   * knowing what the timestamp value is, it's non-trivial to figure out deterministically how many
   * window ranges a timestamp will map to given all possible combinations of a window duration,
   * slide duration and start time (offset). Therefore, we express and over-estimate the number of
   * windows there may be, and filter the valid windows. We use last Project operator to group
   * the window columns into a struct so they can be accessed as `window.start` and `window.end`.
   *
   * The windows are calculated as below:
   * maxNumOverlapping <- ceil(windowDuration / slideDuration)
   * for (i <- 0 until maxNumOverlapping)
   *   lastStart <- timestamp - (timestamp - startTime + slideDuration) % slideDuration
   *   windowStart <- lastStart - i * slideDuration
   *   windowEnd <- windowStart + windowDuration
   *   return windowStart, windowEnd
   *
   * This behaves as follows for the given parameters for the time: 12:05. The valid windows are
   * marked with a +, and invalid ones are marked with a x. The invalid ones are filtered using the
   * Filter operator.
   * window: 12m, slide: 5m, start: 0m :: window: 12m, slide: 5m, start: 2m
   *     11:55 - 12:07 +                      11:52 - 12:04 x
   *     12:00 - 12:12 +                      11:57 - 12:09 +
   *     12:05 - 12:17 +                      12:02 - 12:14 +
   *
   * @param plan The logical plan
   * @return the logical plan that will generate the time windows using the Expand operator, with
   *         the Filter operator for correctness and Project for usability.
   */
  def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUpWithPruning(
    _.containsPattern(TIME_WINDOW), ruleId) {
    case p: LogicalPlan if p.children.size == 1 =>
      val child = p.children.head
      val windowExpressions =
        p.expressions.flatMap(_.collect { case t: TimeWindow => t }).toSet

      val numWindowExpr = p.expressions.flatMap(_.collect {
        case s: SessionWindow => s
        case t: TimeWindow => t
      }).toSet.size

      // Only support a single window expression for now
      if (numWindowExpr == 1 && windowExpressions.nonEmpty &&
          windowExpressions.head.timeColumn.resolved &&
          windowExpressions.head.checkInputDataTypes().isSuccess) {

        val window = windowExpressions.head

        val metadata = window.timeColumn match {
          case a: Attribute => a.metadata
          case _ => Metadata.empty
        }

        def getWindow(i: Int, dataType: DataType): Expression = {
          val timestamp = PreciseTimestampConversion(window.timeColumn, dataType, LongType)
          val lastStart = timestamp - (timestamp - window.startTime
            + window.slideDuration) % window.slideDuration
          val windowStart = lastStart - i * window.slideDuration
          val windowEnd = windowStart + window.windowDuration

          // We make sure value fields are nullable since the dataType of TimeWindow defines them
          // as nullable.
          CreateNamedStruct(
            Literal(WINDOW_START) ::
              PreciseTimestampConversion(windowStart, LongType, dataType).castNullable() ::
              Literal(WINDOW_END) ::
              PreciseTimestampConversion(windowEnd, LongType, dataType).castNullable() ::
              Nil)
        }

        val windowAttr = AttributeReference(
          WINDOW_COL_NAME, window.dataType, metadata = metadata)()

        if (window.windowDuration == window.slideDuration) {
          val windowStruct = Alias(getWindow(0, window.timeColumn.dataType), WINDOW_COL_NAME)(
            exprId = windowAttr.exprId, explicitMetadata = Some(metadata))

          val replacedPlan = p transformExpressions {
            case t: TimeWindow => windowAttr
          }

          // For backwards compatibility we add a filter to filter out nulls
          val filterExpr = IsNotNull(window.timeColumn)

          replacedPlan.withNewChildren(
            Project(windowStruct +: child.output,
              Filter(filterExpr, child)) :: Nil)
        } else {
          val overlappingWindows =
            math.ceil(window.windowDuration * 1.0 / window.slideDuration).toInt
          val windows =
            Seq.tabulate(overlappingWindows)(i =>
              getWindow(i, window.timeColumn.dataType))

          val projections = windows.map(_ +: child.output)

          // When the condition windowDuration % slideDuration = 0 is fulfilled,
          // the estimation of the number of windows becomes exact one,
          // which means all produced windows are valid.
          val filterExpr =
            if (window.windowDuration % window.slideDuration == 0) {
              IsNotNull(window.timeColumn)
            } else {
              window.timeColumn >= windowAttr.getField(WINDOW_START) &&
                window.timeColumn < windowAttr.getField(WINDOW_END)
            }

          val substitutedPlan = Filter(filterExpr,
            Expand(projections, windowAttr +: child.output, child))

          val renamedPlan = p transformExpressions {
            case t: TimeWindow => windowAttr
          }

          renamedPlan.withNewChildren(substitutedPlan :: Nil)
        }
      } else if (numWindowExpr > 1) {
        throw QueryCompilationErrors.multiTimeWindowExpressionsNotSupportedError(p)
      } else {
        p // Return unchanged. Analyzer will throw exception later
      }
  }
}

/** Maps a time column to a session window. */
object SessionWindowing extends Rule[LogicalPlan] {
  import org.apache.spark.sql.catalyst.dsl.expressions._

  private final val SESSION_COL_NAME = "session_window"
  private final val SESSION_START = "start"
  private final val SESSION_END = "end"

  /**
   * Generates the logical plan for generating session window on a timestamp column.
   * Each session window is initially defined as [timestamp, timestamp + gap).
   *
   * This also adds a marker to the session column so that downstream can easily find the column
   * on session window.
   */
  def apply(plan: LogicalPlan): LogicalPlan = plan.resolveOperatorsUp {
    case p: LogicalPlan if p.children.size == 1 =>
      val child = p.children.head
      val sessionExpressions =
        p.expressions.flatMap(_.collect { case s: SessionWindow => s }).toSet

      val numWindowExpr = p.expressions.flatMap(_.collect {
        case s: SessionWindow => s
        case t: TimeWindow => t
      }).toSet.size

      // Only support a single session expression for now
      if (numWindowExpr == 1 && sessionExpressions.nonEmpty &&
          sessionExpressions.head.timeColumn.resolved &&
          sessionExpressions.head.checkInputDataTypes().isSuccess) {

        val session = sessionExpressions.head

        val metadata = session.timeColumn match {
          case a: Attribute => a.metadata
          case _ => Metadata.empty
        }

        val newMetadata = new MetadataBuilder()
          .withMetadata(metadata)
          .putBoolean(SessionWindow.marker, true)
          .build()

        val sessionAttr = AttributeReference(
          SESSION_COL_NAME, session.dataType, metadata = newMetadata)()

        val sessionStart =
          PreciseTimestampConversion(session.timeColumn, session.timeColumn.dataType, LongType)
        val gapDuration = session.gapDuration match {
          case expr if Cast.canCast(expr.dataType, CalendarIntervalType) =>
            Cast(expr, CalendarIntervalType)
          case other =>
            throw QueryCompilationErrors.sessionWindowGapDurationDataTypeError(other.dataType)
        }
        val sessionEnd = PreciseTimestampConversion(session.timeColumn + gapDuration,
          session.timeColumn.dataType, LongType)

        // We make sure value fields are nullable since the dataType of SessionWindow defines them
        // as nullable.
        val literalSessionStruct = CreateNamedStruct(
          Literal(SESSION_START) ::
            PreciseTimestampConversion(sessionStart, LongType, session.timeColumn.dataType)
              .castNullable() ::
            Literal(SESSION_END) ::
            PreciseTimestampConversion(sessionEnd, LongType, session.timeColumn.dataType)
              .castNullable() ::
            Nil)

        val sessionStruct = Alias(literalSessionStruct, SESSION_COL_NAME)(
          exprId = sessionAttr.exprId, explicitMetadata = Some(newMetadata))

        val replacedPlan = p transformExpressions {
          case s: SessionWindow => sessionAttr
        }

        val filterByTimeRange = session.gapDuration match {
          case Literal(interval: CalendarInterval, CalendarIntervalType) =>
            interval == null || interval.months + interval.days + interval.microseconds <= 0
          case _ => true
        }

        // As same as tumbling window, we add a filter to filter out nulls.
        // And we also filter out events with negative or zero or invalid gap duration.
        val filterExpr = if (filterByTimeRange) {
          IsNotNull(session.timeColumn) &&
            (sessionAttr.getField(SESSION_END) > sessionAttr.getField(SESSION_START))
        } else {
          IsNotNull(session.timeColumn)
        }

        replacedPlan.withNewChildren(
          Filter(filterExpr,
            Project(sessionStruct +: child.output, child)) :: Nil)
      } else if (numWindowExpr > 1) {
        throw QueryCompilationErrors.multiTimeWindowExpressionsNotSupportedError(p)
      } else {
        p // Return unchanged. Analyzer will throw exception later
      }
  }
}

/**
 * Resolve expressions if they contains [[NamePlaceholder]]s.
 */
object ResolveExpressionsWithNamePlaceholders extends Rule[LogicalPlan] {
  override def apply(plan: LogicalPlan): LogicalPlan = plan.resolveExpressionsWithPruning(
    _.containsAnyPattern(ARRAYS_ZIP, CREATE_NAMED_STRUCT), ruleId) {
    case e: ArraysZip if !e.resolved =>
      val names = e.children.zip(e.names).map {
        case (e: NamedExpression, NamePlaceholder) if e.resolved =>
          Literal(e.name)
        case (_, other) => other
      }
      ArraysZip(e.children, names)

    case e: CreateNamedStruct if !e.resolved =>
      val children = e.children.grouped(2).flatMap {
        case Seq(NamePlaceholder, e: NamedExpression) if e.resolved =>
          Seq(Literal(e.name), e)
        case kv =>
          kv
      }
      CreateNamedStruct(children.toList)
  }
}

/**
 * The aggregate expressions from subquery referencing outer query block are pushed
 * down to the outer query block for evaluation. This rule below updates such outer references
 * as AttributeReference referring attributes from the parent/outer query block.
 *
 * For example (SQL):
 * {{{
 *   SELECT l.a FROM l GROUP BY 1 HAVING EXISTS (SELECT 1 FROM r WHERE r.d < min(l.b))
 * }}}
 * Plan before the rule.
 *    Project [a#226]
 *    +- Filter exists#245 [min(b#227)#249]
 *       :  +- Project [1 AS 1#247]
 *       :     +- Filter (d#238 < min(outer(b#227)))       <-----
 *       :        +- SubqueryAlias r
 *       :           +- Project [_1#234 AS c#237, _2#235 AS d#238]
 *       :              +- LocalRelation [_1#234, _2#235]
 *       +- Aggregate [a#226], [a#226, min(b#227) AS min(b#227)#249]
 *          +- SubqueryAlias l
 *             +- Project [_1#223 AS a#226, _2#224 AS b#227]
 *                +- LocalRelation [_1#223, _2#224]
 * Plan after the rule.
 *    Project [a#226]
 *    +- Filter exists#245 [min(b#227)#249]
 *       :  +- Project [1 AS 1#247]
 *       :     +- Filter (d#238 < outer(min(b#227)#249))   <-----
 *       :        +- SubqueryAlias r
 *       :           +- Project [_1#234 AS c#237, _2#235 AS d#238]
 *       :              +- LocalRelation [_1#234, _2#235]
 *       +- Aggregate [a#226], [a#226, min(b#227) AS min(b#227)#249]
 *          +- SubqueryAlias l
 *             +- Project [_1#223 AS a#226, _2#224 AS b#227]
 *                +- LocalRelation [_1#223, _2#224]
 */
object UpdateOuterReferences extends Rule[LogicalPlan] {
  private def stripAlias(expr: Expression): Expression = expr match { case a: Alias => a.child }

  private def updateOuterReferenceInSubquery(
      plan: LogicalPlan,
      refExprs: Seq[Expression]): LogicalPlan = {
    plan resolveExpressions { case e =>
      val outerAlias =
        refExprs.find(stripAlias(_).semanticEquals(stripOuterReference(e)))
      outerAlias match {
        case Some(a: Alias) => OuterReference(a.toAttribute)
        case _ => e
      }
    }
  }

  def apply(plan: LogicalPlan): LogicalPlan = {
    plan.resolveOperatorsWithPruning(
      _.containsAllPatterns(PLAN_EXPRESSION, FILTER, AGGREGATE), ruleId) {
      case f @ Filter(_, a: Aggregate) if f.resolved =>
        f.transformExpressionsWithPruning(_.containsPattern(PLAN_EXPRESSION), ruleId) {
          case s: SubqueryExpression if s.children.nonEmpty =>
            // Collect the aliases from output of aggregate.
            val outerAliases = a.aggregateExpressions collect { case a: Alias => a }
            // Update the subquery plan to record the OuterReference to point to outer query plan.
            s.withNewPlan(updateOuterReferenceInSubquery(s.plan, outerAliases))
      }
    }
  }
}

/**
 * The rule `ResolveAggregationFunctions` in the main resolution batch creates
 * [[TempResolvedColumn]] in filter conditions and sort expressions to hold the temporarily resolved
 * column with `agg.child`. When filter conditions or sort expressions are resolved,
 * `ResolveAggregationFunctions` will replace [[TempResolvedColumn]], to [[AttributeReference]] if
 * it's inside aggregate functions or group expressions, or to [[UnresolvedAttribute]] otherwise,
 * hoping other rules can resolve it.
 *
 * This rule runs after the main resolution batch, and can still hit [[TempResolvedColumn]] if
 * filter conditions or sort expressions are not resolved. When this happens, there is no point to
 * turn [[TempResolvedColumn]] to [[UnresolvedAttribute]], as we can't resolve the column
 * differently, and query will fail. This rule strips all [[TempResolvedColumn]]s in Filter/Sort and
 * turns them to [[AttributeReference]] so that the error message can tell users why the filter
 * conditions or sort expressions were not resolved.
 */
object RemoveTempResolvedColumn extends Rule[LogicalPlan] {
  override def apply(plan: LogicalPlan): LogicalPlan = {
    plan.resolveOperatorsUp {
      case f @ Filter(cond, agg: Aggregate) if agg.resolved =>
        withOrigin(f.origin)(f.copy(condition = trimTempResolvedColumn(cond)))
      case s @ Sort(sortOrder, _, agg: Aggregate) if agg.resolved =>
        val newSortOrder = sortOrder.map { order =>
          trimTempResolvedColumn(order).asInstanceOf[SortOrder]
        }
        withOrigin(s.origin)(s.copy(order = newSortOrder))
      case other => other.transformExpressionsUp {
        // This should not happen. We restore TempResolvedColumn to UnresolvedAttribute to be safe.
        case t: TempResolvedColumn => restoreTempResolvedColumn(t)
      }
    }
  }

  def trimTempResolvedColumn(input: Expression): Expression = input.transform {
    case t: TempResolvedColumn => t.child
  }

  def restoreTempResolvedColumn(t: TempResolvedColumn): Expression = {
    CurrentOrigin.withOrigin(t.origin)(UnresolvedAttribute(t.nameParts))
  }
}

相关信息

spark 源码目录

相关文章

spark AlreadyExistException 源码

spark AnsiTypeCoercion 源码

spark CTESubstitution 源码

spark CannotReplaceMissingTableException 源码

spark CheckAnalysis 源码

spark DecimalPrecision 源码

spark DeduplicateRelations 源码

spark FunctionRegistry 源码

spark HintErrorLogger 源码

spark KeepLegacyOutputs 源码

0  赞