spark basicPhysicalOperators 源码

  • 2022-10-20
  • 浏览 (244)

spark basicPhysicalOperators 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/basicPhysicalOperators.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution

import java.util.concurrent.{Future => JFuture}
import java.util.concurrent.TimeUnit._

import scala.collection.mutable
import scala.concurrent.ExecutionContext
import scala.concurrent.duration.Duration

import org.apache.spark.{InterruptibleIterator, Partition, SparkContext, TaskContext}
import org.apache.spark.rdd.{EmptyRDD, PartitionwiseSampledRDD, RDD}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.BindReferences.bindReferences
import org.apache.spark.sql.catalyst.expressions.codegen._
import org.apache.spark.sql.catalyst.plans.physical._
import org.apache.spark.sql.execution.metric.SQLMetrics
import org.apache.spark.sql.internal.{SQLConf, StaticSQLConf}
import org.apache.spark.sql.types.{LongType, StructType}
import org.apache.spark.sql.vectorized.ColumnarBatch
import org.apache.spark.util.ThreadUtils
import org.apache.spark.util.random.{BernoulliCellSampler, PoissonSampler}

/** Physical plan for Project. */
case class ProjectExec(projectList: Seq[NamedExpression], child: SparkPlan)
  extends UnaryExecNode
    with CodegenSupport
    with AliasAwareOutputPartitioning
    with AliasAwareOutputOrdering {

  override def output: Seq[Attribute] = projectList.map(_.toAttribute)

  override def inputRDDs(): Seq[RDD[InternalRow]] = {
    child.asInstanceOf[CodegenSupport].inputRDDs()
  }

  protected override def doProduce(ctx: CodegenContext): String = {
    child.asInstanceOf[CodegenSupport].produce(ctx, this)
  }

  override def usedInputs: AttributeSet = {
    // only the attributes those are used at least twice should be evaluated before this plan,
    // otherwise we could defer the evaluation until output attribute is actually used.
    val usedExprIds = projectList.flatMap(_.collect {
      case a: Attribute => a.exprId
    })
    val usedMoreThanOnce = usedExprIds.groupBy(id => id).filter(_._2.size > 1).keySet
    references.filter(a => usedMoreThanOnce.contains(a.exprId))
  }

  override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
    val exprs = bindReferences[Expression](projectList, child.output)
    val (subExprsCode, resultVars, localValInputs) = if (conf.subexpressionEliminationEnabled) {
      // subexpression elimination
      val subExprs = ctx.subexpressionEliminationForWholeStageCodegen(exprs)
      val genVars = ctx.withSubExprEliminationExprs(subExprs.states) {
        exprs.map(_.genCode(ctx))
      }
      (ctx.evaluateSubExprEliminationState(subExprs.states.values), genVars,
        subExprs.exprCodesNeedEvaluate)
    } else {
      ("", exprs.map(_.genCode(ctx)), Seq.empty)
    }

    // Evaluation of non-deterministic expressions can't be deferred.
    val nonDeterministicAttrs = projectList.filterNot(_.deterministic).map(_.toAttribute)
    s"""
       |// common sub-expressions
       |${evaluateVariables(localValInputs)}
       |$subExprsCode
       |${evaluateRequiredVariables(output, resultVars, AttributeSet(nonDeterministicAttrs))}
       |${consume(ctx, resultVars)}
     """.stripMargin
  }

  protected override def doExecute(): RDD[InternalRow] = {
    child.execute().mapPartitionsWithIndexInternal { (index, iter) =>
      val project = UnsafeProjection.create(projectList, child.output)
      project.initialize(index)
      iter.map(project)
    }
  }

  override protected def outputExpressions: Seq[NamedExpression] = projectList

  override protected def orderingExpressions: Seq[SortOrder] = child.outputOrdering

  override def verboseStringWithOperatorId(): String = {
    s"""
       |$formattedNodeName
       |${ExplainUtils.generateFieldString("Output", projectList)}
       |${ExplainUtils.generateFieldString("Input", child.output)}
       |""".stripMargin
  }

  override protected def withNewChildInternal(newChild: SparkPlan): ProjectExec =
    copy(child = newChild)
}

trait GeneratePredicateHelper extends PredicateHelper {
  self: CodegenSupport =>

  protected def generatePredicateCode(
      ctx: CodegenContext,
      condition: Expression,
      inputAttrs: Seq[Attribute],
      inputExprCode: Seq[ExprCode]): String = {
    val (notNullPreds, otherPreds) = splitConjunctivePredicates(condition).partition {
      case IsNotNull(a) => isNullIntolerant(a) && a.references.subsetOf(AttributeSet(inputAttrs))
      case _ => false
    }
    val nonNullAttrExprIds = notNullPreds.flatMap(_.references).distinct.map(_.exprId)
    val outputAttrs = outputWithNullability(inputAttrs, nonNullAttrExprIds)
    generatePredicateCode(
      ctx, inputAttrs, inputExprCode, outputAttrs, notNullPreds, otherPreds,
      nonNullAttrExprIds)
  }

  protected def generatePredicateCode(
      ctx: CodegenContext,
      inputAttrs: Seq[Attribute],
      inputExprCode: Seq[ExprCode],
      outputAttrs: Seq[Attribute],
      notNullPreds: Seq[Expression],
      otherPreds: Seq[Expression],
      nonNullAttrExprIds: Seq[ExprId]): String = {
    /**
     * Generates code for `c`, using `in` for input attributes and `attrs` for nullability.
     */
    def genPredicate(c: Expression, in: Seq[ExprCode], attrs: Seq[Attribute]): String = {
      val bound = BindReferences.bindReference(c, attrs)
      val evaluated = evaluateRequiredVariables(inputAttrs, in, c.references)

      // Generate the code for the predicate.
      val ev = ExpressionCanonicalizer.execute(bound).genCode(ctx)
      val nullCheck = if (bound.nullable) {
        s"${ev.isNull} || "
      } else {
        ""
      }

      s"""
         |$evaluated
         |${ev.code}
         |if (${nullCheck}!${ev.value}) continue;
       """.stripMargin
    }

    // To generate the predicates we will follow this algorithm.
    // For each predicate that is not IsNotNull, we will generate them one by one loading attributes
    // as necessary. For each of both attributes, if there is an IsNotNull predicate we will
    // generate that check *before* the predicate. After all of these predicates, we will generate
    // the remaining IsNotNull checks that were not part of other predicates.
    // This has the property of not doing redundant IsNotNull checks and taking better advantage of
    // short-circuiting, not loading attributes until they are needed.
    // This is very perf sensitive.
    // TODO: revisit this. We can consider reordering predicates as well.
    val generatedIsNotNullChecks = new Array[Boolean](notNullPreds.length)
    val extraIsNotNullAttrs = mutable.Set[Attribute]()
    val generated = otherPreds.map { c =>
      val nullChecks = c.references.map { r =>
        val idx = notNullPreds.indexWhere { n => n.asInstanceOf[IsNotNull].child.semanticEquals(r)}
        if (idx != -1 && !generatedIsNotNullChecks(idx)) {
          generatedIsNotNullChecks(idx) = true
          // Use the child's output. The nullability is what the child produced.
          genPredicate(notNullPreds(idx), inputExprCode, inputAttrs)
        } else if (nonNullAttrExprIds.contains(r.exprId) && !extraIsNotNullAttrs.contains(r)) {
          extraIsNotNullAttrs += r
          genPredicate(IsNotNull(r), inputExprCode, inputAttrs)
        } else {
          ""
        }
      }.mkString("\n").trim

      // Here we use *this* operator's output with this output's nullability since we already
      // enforced them with the IsNotNull checks above.
      s"""
         |$nullChecks
         |${genPredicate(c, inputExprCode, outputAttrs)}
       """.stripMargin.trim
    }.mkString("\n")

    val nullChecks = notNullPreds.zipWithIndex.map { case (c, idx) =>
      if (!generatedIsNotNullChecks(idx)) {
        genPredicate(c, inputExprCode, inputAttrs)
      } else {
        ""
      }
    }.mkString("\n")

    s"""
       |$generated
       |$nullChecks
     """.stripMargin
  }
}

/** Physical plan for Filter. */
case class FilterExec(condition: Expression, child: SparkPlan)
  extends UnaryExecNode with CodegenSupport with GeneratePredicateHelper {

  // Split out all the IsNotNulls from condition.
  private val (notNullPreds, otherPreds) = splitConjunctivePredicates(condition).partition {
    case IsNotNull(a) => isNullIntolerant(a) && a.references.subsetOf(child.outputSet)
    case _ => false
  }

  // The columns that will filtered out by `IsNotNull` could be considered as not nullable.
  private val notNullAttributes = notNullPreds.flatMap(_.references).distinct.map(_.exprId)

  // Mark this as empty. We'll evaluate the input during doConsume(). We don't want to evaluate
  // all the variables at the beginning to take advantage of short circuiting.
  override def usedInputs: AttributeSet = AttributeSet.empty

  override def output: Seq[Attribute] = outputWithNullability(child.output, notNullAttributes)

  override lazy val metrics = Map(
    "numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))

  override def inputRDDs(): Seq[RDD[InternalRow]] = {
    child.asInstanceOf[CodegenSupport].inputRDDs()
  }

  protected override def doProduce(ctx: CodegenContext): String = {
    child.asInstanceOf[CodegenSupport].produce(ctx, this)
  }

  override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
    val numOutput = metricTerm(ctx, "numOutputRows")

    val predicateCode = generatePredicateCode(
      ctx, child.output, input, output, notNullPreds, otherPreds, notNullAttributes)

    // Reset the isNull to false for the not-null columns, then the followed operators could
    // generate better code (remove dead branches).
    val resultVars = input.zipWithIndex.map { case (ev, i) =>
      if (notNullAttributes.contains(child.output(i).exprId)) {
        ev.isNull = FalseLiteral
      }
      ev
    }

    // Note: wrap in "do { } while(false);", so the generated checks can jump out with "continue;"
    s"""
       |do {
       |  $predicateCode
       |  $numOutput.add(1);
       |  ${consume(ctx, resultVars)}
       |} while(false);
     """.stripMargin
  }

  protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    child.execute().mapPartitionsWithIndexInternal { (index, iter) =>
      val predicate = Predicate.create(condition, child.output)
      predicate.initialize(0)
      iter.filter { row =>
        val r = predicate.eval(row)
        if (r) numOutputRows += 1
        r
      }
    }
  }

  override def outputOrdering: Seq[SortOrder] = child.outputOrdering

  override def outputPartitioning: Partitioning = child.outputPartitioning

  override def verboseStringWithOperatorId(): String = {
    s"""
       |$formattedNodeName
       |${ExplainUtils.generateFieldString("Input", child.output)}
       |Condition : ${condition}
       |""".stripMargin
  }

  override protected def withNewChildInternal(newChild: SparkPlan): FilterExec =
    copy(child = newChild)
}

/**
 * Physical plan for sampling the dataset.
 *
 * @param lowerBound Lower-bound of the sampling probability (usually 0.0)
 * @param upperBound Upper-bound of the sampling probability. The expected fraction sampled
 *                   will be ub - lb.
 * @param withReplacement Whether to sample with replacement.
 * @param seed the random seed
 * @param child the SparkPlan
 */
case class SampleExec(
    lowerBound: Double,
    upperBound: Double,
    withReplacement: Boolean,
    seed: Long,
    child: SparkPlan) extends UnaryExecNode with CodegenSupport {
  override def output: Seq[Attribute] = child.output

  override def outputPartitioning: Partitioning = child.outputPartitioning

  override lazy val metrics = Map(
    "numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))

  protected override def doExecute(): RDD[InternalRow] = {
    if (withReplacement) {
      // Disable gap sampling since the gap sampling method buffers two rows internally,
      // requiring us to copy the row, which is more expensive than the random number generator.
      new PartitionwiseSampledRDD[InternalRow, InternalRow](
        child.execute(),
        new PoissonSampler[InternalRow](upperBound - lowerBound, useGapSamplingIfPossible = false),
        preservesPartitioning = true,
        seed)
    } else {
      child.execute().randomSampleWithRange(lowerBound, upperBound, seed)
    }
  }

  // Mark this as empty. This plan doesn't need to evaluate any inputs and can defer the evaluation
  // to the parent operator.
  override def usedInputs: AttributeSet = AttributeSet.empty

  override def inputRDDs(): Seq[RDD[InternalRow]] = {
    child.asInstanceOf[CodegenSupport].inputRDDs()
  }

  protected override def doProduce(ctx: CodegenContext): String = {
    child.asInstanceOf[CodegenSupport].produce(ctx, this)
  }

  override def needCopyResult: Boolean = {
    child.asInstanceOf[CodegenSupport].needCopyResult || withReplacement
  }

  override def doConsume(ctx: CodegenContext, input: Seq[ExprCode], row: ExprCode): String = {
    val numOutput = metricTerm(ctx, "numOutputRows")

    if (withReplacement) {
      val samplerClass = classOf[PoissonSampler[UnsafeRow]].getName
      val initSampler = ctx.freshName("initSampler")

      // Inline mutable state since not many Sample operations in a task
      val sampler = ctx.addMutableState(s"$samplerClass<UnsafeRow>", "sampleReplace",
        v => {
          val initSamplerFuncName = ctx.addNewFunction(initSampler,
            s"""
              | private void $initSampler() {
              |   $v = new $samplerClass<UnsafeRow>($upperBound - $lowerBound, false);
              |   java.util.Random random = new java.util.Random(${seed}L);
              |   long randomSeed = random.nextLong();
              |   int loopCount = 0;
              |   while (loopCount < partitionIndex) {
              |     randomSeed = random.nextLong();
              |     loopCount += 1;
              |   }
              |   $v.setSeed(randomSeed);
              | }
           """.stripMargin.trim)
          s"$initSamplerFuncName();"
        }, forceInline = true)

      val samplingCount = ctx.freshName("samplingCount")
      s"""
         | int $samplingCount = $sampler.sample();
         | while ($samplingCount-- > 0) {
         |   $numOutput.add(1);
         |   ${consume(ctx, input)}
         | }
       """.stripMargin.trim
    } else {
      val samplerClass = classOf[BernoulliCellSampler[UnsafeRow]].getName
      val sampler = ctx.addMutableState(s"$samplerClass<UnsafeRow>", "sampler",
        v => s"""
          | $v = new $samplerClass<UnsafeRow>($lowerBound, $upperBound, false);
          | $v.setSeed(${seed}L + partitionIndex);
         """.stripMargin.trim)

      s"""
         | if ($sampler.sample() != 0) {
         |   $numOutput.add(1);
         |   ${consume(ctx, input)}
         | }
       """.stripMargin.trim
    }
  }

  override protected def withNewChildInternal(newChild: SparkPlan): SampleExec =
    copy(child = newChild)
}


/**
 * Physical plan for range (generating a range of 64 bit numbers).
 */
case class RangeExec(range: org.apache.spark.sql.catalyst.plans.logical.Range)
  extends LeafExecNode with CodegenSupport {

  val start: Long = range.start
  val end: Long = range.end
  val step: Long = range.step
  val numSlices: Int = range.numSlices.getOrElse(session.leafNodeDefaultParallelism)
  val numElements: BigInt = range.numElements
  val isEmptyRange: Boolean = start == end || (start < end ^ 0 < step)

  override val output: Seq[Attribute] = range.output

  override def outputOrdering: Seq[SortOrder] = range.outputOrdering

  override def outputPartitioning: Partitioning = {
    if (numElements > 0) {
      if (numSlices == 1) {
        SinglePartition
      } else {
        RangePartitioning(outputOrdering, numSlices)
      }
    } else {
      UnknownPartitioning(0)
    }
  }

  override lazy val metrics = Map(
    "numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))

  override def doCanonicalize(): SparkPlan = {
    RangeExec(range.canonicalized.asInstanceOf[org.apache.spark.sql.catalyst.plans.logical.Range])
  }

  override def inputRDDs(): Seq[RDD[InternalRow]] = {
    val rdd = if (isEmptyRange) {
      new EmptyRDD[InternalRow](sparkContext)
    } else {
      sparkContext.parallelize(0 until numSlices, numSlices).map(i => InternalRow(i))
    }
    rdd :: Nil
  }

  protected override def doProduce(ctx: CodegenContext): String = {
    val numOutput = metricTerm(ctx, "numOutputRows")

    val initTerm = ctx.addMutableState(CodeGenerator.JAVA_BOOLEAN, "initRange")
    val nextIndex = ctx.addMutableState(CodeGenerator.JAVA_LONG, "nextIndex")

    val value = ctx.freshName("value")
    val ev = ExprCode.forNonNullValue(JavaCode.variable(value, LongType))
    val BigInt = classOf[java.math.BigInteger].getName

    // Inline mutable state since not many Range operations in a task
    val taskContext = ctx.addMutableState("TaskContext", "taskContext",
      v => s"$v = TaskContext.get();", forceInline = true)
    val inputMetrics = ctx.addMutableState("InputMetrics", "inputMetrics",
      v => s"$v = $taskContext.taskMetrics().inputMetrics();", forceInline = true)

    // In order to periodically update the metrics without inflicting performance penalty, this
    // operator produces elements in batches. After a batch is complete, the metrics are updated
    // and a new batch is started.
    // In the implementation below, the code in the inner loop is producing all the values
    // within a batch, while the code in the outer loop is setting batch parameters and updating
    // the metrics.

    // Once nextIndex == batchEnd, it's time to progress to the next batch.
    val batchEnd = ctx.addMutableState(CodeGenerator.JAVA_LONG, "batchEnd")

    // How many values should still be generated by this range operator.
    val numElementsTodo = ctx.addMutableState(CodeGenerator.JAVA_LONG, "numElementsTodo")

    // How many values should be generated in the next batch.
    val nextBatchTodo = ctx.freshName("nextBatchTodo")

    // The default size of a batch, which must be positive integer
    val batchSize = 1000

    val initRangeFuncName = ctx.addNewFunction("initRange",
      s"""
        | private void initRange(int idx) {
        |   $BigInt index = $BigInt.valueOf(idx);
        |   $BigInt numSlice = $BigInt.valueOf(${numSlices}L);
        |   $BigInt numElement = $BigInt.valueOf(${numElements.toLong}L);
        |   $BigInt step = $BigInt.valueOf(${step}L);
        |   $BigInt start = $BigInt.valueOf(${start}L);
        |   long partitionEnd;
        |
        |   $BigInt st = index.multiply(numElement).divide(numSlice).multiply(step).add(start);
        |   if (st.compareTo($BigInt.valueOf(Long.MAX_VALUE)) > 0) {
        |     $nextIndex = Long.MAX_VALUE;
        |   } else if (st.compareTo($BigInt.valueOf(Long.MIN_VALUE)) < 0) {
        |     $nextIndex = Long.MIN_VALUE;
        |   } else {
        |     $nextIndex = st.longValue();
        |   }
        |   $batchEnd = $nextIndex;
        |
        |   $BigInt end = index.add($BigInt.ONE).multiply(numElement).divide(numSlice)
        |     .multiply(step).add(start);
        |   if (end.compareTo($BigInt.valueOf(Long.MAX_VALUE)) > 0) {
        |     partitionEnd = Long.MAX_VALUE;
        |   } else if (end.compareTo($BigInt.valueOf(Long.MIN_VALUE)) < 0) {
        |     partitionEnd = Long.MIN_VALUE;
        |   } else {
        |     partitionEnd = end.longValue();
        |   }
        |
        |   $BigInt startToEnd = $BigInt.valueOf(partitionEnd).subtract(
        |     $BigInt.valueOf($nextIndex));
        |   $numElementsTodo  = startToEnd.divide(step).longValue();
        |   if ($numElementsTodo < 0) {
        |     $numElementsTodo = 0;
        |   } else if (startToEnd.remainder(step).compareTo($BigInt.valueOf(0L)) != 0) {
        |     $numElementsTodo++;
        |   }
        | }
       """.stripMargin)

    val localIdx = ctx.freshName("localIdx")
    val localEnd = ctx.freshName("localEnd")
    val stopCheck = if (parent.needStopCheck) {
      s"""
         |if (shouldStop()) {
         |  $nextIndex = $value + ${step}L;
         |  $numOutput.add($localIdx + 1);
         |  $inputMetrics.incRecordsRead($localIdx + 1);
         |  return;
         |}
       """.stripMargin
    } else {
      "// shouldStop check is eliminated"
    }
    val loopCondition = if (limitNotReachedChecks.isEmpty) {
      "true"
    } else {
      limitNotReachedChecks.mkString(" && ")
    }

    // An overview of the Range processing.
    //
    // For each partition, the Range task needs to produce records from partition start(inclusive)
    // to end(exclusive). For better performance, we separate the partition range into batches, and
    // use 2 loops to produce data. The outer while loop is used to iterate batches, and the inner
    // for loop is used to iterate records inside a batch.
    //
    // `nextIndex` tracks the index of the next record that is going to be consumed, initialized
    // with partition start. `batchEnd` tracks the end index of the current batch, initialized
    // with `nextIndex`. In the outer loop, we first check if `nextIndex == batchEnd`. If it's true,
    // it means the current batch is fully consumed, and we will update `batchEnd` to process the
    // next batch. If `batchEnd` reaches partition end, exit the outer loop. Finally we enter the
    // inner loop. Note that, when we enter inner loop, `nextIndex` must be different from
    // `batchEnd`, otherwise we already exit the outer loop.
    //
    // The inner loop iterates from 0 to `localEnd`, which is calculated by
    // `(batchEnd - nextIndex) / step`. Since `batchEnd` is increased by `nextBatchTodo * step` in
    // the outer loop, and initialized with `nextIndex`, so `batchEnd - nextIndex` is always
    // divisible by `step`. The `nextIndex` is increased by `step` during each iteration, and ends
    // up being equal to `batchEnd` when the inner loop finishes.
    //
    // The inner loop can be interrupted, if the query has produced at least one result row, so that
    // we don't buffer too many result rows and waste memory. It's ok to interrupt the inner loop,
    // because `nextIndex` will be updated before interrupting.

    s"""
      | // initialize Range
      | if (!$initTerm) {
      |   $initTerm = true;
      |   $initRangeFuncName(partitionIndex);
      | }
      |
      | while ($loopCondition) {
      |   if ($nextIndex == $batchEnd) {
      |     long $nextBatchTodo;
      |     if ($numElementsTodo > ${batchSize}L) {
      |       $nextBatchTodo = ${batchSize}L;
      |       $numElementsTodo -= ${batchSize}L;
      |     } else {
      |       $nextBatchTodo = $numElementsTodo;
      |       $numElementsTodo = 0;
      |       if ($nextBatchTodo == 0) break;
      |     }
      |     $batchEnd += $nextBatchTodo * ${step}L;
      |   }
      |
      |   int $localEnd = (int)(($batchEnd - $nextIndex) / ${step}L);
      |   for (int $localIdx = 0; $localIdx < $localEnd; $localIdx++) {
      |     long $value = ((long)$localIdx * ${step}L) + $nextIndex;
      |     ${consume(ctx, Seq(ev))}
      |     $stopCheck
      |   }
      |   $nextIndex = $batchEnd;
      |   $numOutput.add($localEnd);
      |   $inputMetrics.incRecordsRead($localEnd);
      |   $taskContext.killTaskIfInterrupted();
      | }
     """.stripMargin
  }

  protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    if (isEmptyRange) {
      new EmptyRDD[InternalRow](sparkContext)
    } else {
      sparkContext
        .parallelize(0 until numSlices, numSlices)
        .mapPartitionsWithIndex { (i, _) =>
          val partitionStart = (i * numElements) / numSlices * step + start
          val partitionEnd = (((i + 1) * numElements) / numSlices) * step + start

          def getSafeMargin(bi: BigInt): Long =
            if (bi.isValidLong) {
              bi.toLong
            } else if (bi > 0) {
              Long.MaxValue
            } else {
              Long.MinValue
            }

          val safePartitionStart = getSafeMargin(partitionStart)
          val safePartitionEnd = getSafeMargin(partitionEnd)
          val rowSize = UnsafeRow.calculateBitSetWidthInBytes(1) + LongType.defaultSize
          val unsafeRow = UnsafeRow.createFromByteArray(rowSize, 1)
          val taskContext = TaskContext.get()

          val iter = new Iterator[InternalRow] {
            private[this] var number: Long = safePartitionStart
            private[this] var overflow: Boolean = false
            private[this] val inputMetrics = taskContext.taskMetrics().inputMetrics

            override def hasNext =
              if (!overflow) {
                if (step > 0) {
                  number < safePartitionEnd
                } else {
                  number > safePartitionEnd
                }
              } else false

            override def next() = {
              val ret = number
              number += step
              if (number < ret ^ step < 0) {
                // we have Long.MaxValue + Long.MaxValue < Long.MaxValue
                // and Long.MinValue + Long.MinValue > Long.MinValue, so iff the step causes a step
                // back, we are pretty sure that we have an overflow.
                overflow = true
              }

              numOutputRows += 1
              inputMetrics.incRecordsRead(1)
              unsafeRow.setLong(0, ret)
              unsafeRow
            }
          }
          new InterruptibleIterator(taskContext, iter)
        }
    }
  }

  override def simpleString(maxFields: Int): String = {
    s"Range ($start, $end, step=$step, splits=$numSlices)"
  }
}

/**
 * Physical plan for unioning two plans, without a distinct. This is UNION ALL in SQL.
 *
 * If we change how this is implemented physically, we'd need to update
 * [[org.apache.spark.sql.catalyst.plans.logical.Union.maxRowsPerPartition]].
 */
case class UnionExec(children: Seq[SparkPlan]) extends SparkPlan {
  // updating nullability to make all the children consistent
  override def output: Seq[Attribute] = {
    children.map(_.output).transpose.map { attrs =>
      val firstAttr = attrs.head
      val nullable = attrs.exists(_.nullable)
      val newDt = attrs.map(_.dataType).reduce(StructType.unionLikeMerge)
      if (firstAttr.dataType == newDt) {
        firstAttr.withNullability(nullable)
      } else {
        AttributeReference(firstAttr.name, newDt, nullable, firstAttr.metadata)(
          firstAttr.exprId, firstAttr.qualifier)
      }
    }
  }

  protected override def doExecute(): RDD[InternalRow] =
    sparkContext.union(children.map(_.execute()))

  override def supportsColumnar: Boolean = children.forall(_.supportsColumnar)

  override def supportsRowBased: Boolean = children.forall(_.supportsRowBased)

  protected override def doExecuteColumnar(): RDD[ColumnarBatch] = {
    sparkContext.union(children.map(_.executeColumnar()))
  }

  override protected def withNewChildrenInternal(newChildren: IndexedSeq[SparkPlan]): UnionExec =
    copy(children = newChildren)
}

/**
 * Physical plan for returning a new RDD that has exactly `numPartitions` partitions.
 * Similar to coalesce defined on an [[RDD]], this operation results in a narrow dependency, e.g.
 * if you go from 1000 partitions to 100 partitions, there will not be a shuffle, instead each of
 * the 100 new partitions will claim 10 of the current partitions.  If a larger number of partitions
 * is requested, it will stay at the current number of partitions.
 *
 * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
 * this may result in your computation taking place on fewer nodes than
 * you like (e.g. one node in the case of numPartitions = 1). To avoid this,
 * you see ShuffleExchange. This will add a shuffle step, but means the
 * current upstream partitions will be executed in parallel (per whatever
 * the current partitioning is).
 */
case class CoalesceExec(numPartitions: Int, child: SparkPlan) extends UnaryExecNode {
  override def output: Seq[Attribute] = child.output

  override def outputPartitioning: Partitioning = {
    if (numPartitions == 1) SinglePartition
    else UnknownPartitioning(numPartitions)
  }

  protected override def doExecute(): RDD[InternalRow] = {
    val rdd = child.execute()
    if (numPartitions == 1 && rdd.getNumPartitions < 1) {
      // Make sure we don't output an RDD with 0 partitions, when claiming that we have a
      // `SinglePartition`.
      new CoalesceExec.EmptyRDDWithPartitions(sparkContext, numPartitions)
    } else {
      rdd.coalesce(numPartitions, shuffle = false)
    }
  }

  override protected def withNewChildInternal(newChild: SparkPlan): CoalesceExec =
    copy(child = newChild)
}

object CoalesceExec {
  /** A simple RDD with no data, but with the given number of partitions. */
  class EmptyRDDWithPartitions(
      @transient private val sc: SparkContext,
      numPartitions: Int) extends RDD[InternalRow](sc, Nil) {

    override def getPartitions: Array[Partition] =
      Array.tabulate(numPartitions)(i => EmptyPartition(i))

    override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
      Iterator.empty
    }
  }

  case class EmptyPartition(index: Int) extends Partition
}

/**
 * Parent class for different types of subquery plans
 */
abstract class BaseSubqueryExec extends SparkPlan {
  def name: String
  def child: SparkPlan

  override def output: Seq[Attribute] = child.output

  override def outputPartitioning: Partitioning = child.outputPartitioning

  override def outputOrdering: Seq[SortOrder] = child.outputOrdering

  override def generateTreeString(
      depth: Int,
      lastChildren: Seq[Boolean],
      append: String => Unit,
      verbose: Boolean,
      prefix: String = "",
      addSuffix: Boolean = false,
      maxFields: Int,
      printNodeId: Boolean,
      indent: Int = 0): Unit = {
    /**
     * In the new explain mode `EXPLAIN FORMATTED`, the subqueries are not shown in the
     * main plan and are printed separately along with correlation information with
     * its parent plan. The condition below makes sure that subquery plans are
     * excluded from the main plan.
     */
    if (!printNodeId) {
      super.generateTreeString(
        depth,
        lastChildren,
        append,
        verbose,
        "",
        false,
        maxFields,
        printNodeId,
        indent)
    }
  }
}

/**
 * Physical plan for a subquery.
 */
case class SubqueryExec(name: String, child: SparkPlan, maxNumRows: Option[Int] = None)
  extends BaseSubqueryExec with UnaryExecNode {

  override lazy val metrics = Map(
    "dataSize" -> SQLMetrics.createSizeMetric(sparkContext, "data size"),
    "collectTime" -> SQLMetrics.createTimingMetric(sparkContext, "time to collect"))

  @transient
  private lazy val relationFuture: JFuture[Array[InternalRow]] = {
    // relationFuture is used in "doExecute". Therefore we can get the execution id correctly here.
    val executionId = sparkContext.getLocalProperty(SQLExecution.EXECUTION_ID_KEY)
    SQLExecution.withThreadLocalCaptured[Array[InternalRow]](
      session,
      SubqueryExec.executionContext) {
      // This will run in another thread. Set the execution id so that we can connect these jobs
      // with the correct execution.
      SQLExecution.withExecutionId(session, executionId) {
        val beforeCollect = System.nanoTime()
        // Note that we use .executeCollect() because we don't want to convert data to Scala types
        val rows: Array[InternalRow] = if (maxNumRows.isDefined) {
          child.executeTake(maxNumRows.get)
        } else {
          child.executeCollect()
        }
        val beforeBuild = System.nanoTime()
        longMetric("collectTime") += NANOSECONDS.toMillis(beforeBuild - beforeCollect)
        val dataSize = rows.map(_.asInstanceOf[UnsafeRow].getSizeInBytes.toLong).sum
        longMetric("dataSize") += dataSize

        SQLMetrics.postDriverMetricUpdates(sparkContext, executionId, metrics.values.toSeq)
        rows
      }
    }
  }

  protected override def doCanonicalize(): SparkPlan = {
    SubqueryExec("Subquery", child.canonicalized, maxNumRows)
  }

  protected override def doPrepare(): Unit = {
    relationFuture
  }

  // `SubqueryExec` should only be used by calling `executeCollect`. It launches a new thread to
  // collect the result of `child`. We should not trigger codegen of `child` again in other threads,
  // as generating code is not thread-safe.
  override def executeCollect(): Array[InternalRow] = {
    ThreadUtils.awaitResult(relationFuture, Duration.Inf)
  }

  protected override def doExecute(): RDD[InternalRow] = {
    throw new IllegalStateException("SubqueryExec.doExecute should never be called")
  }

  override def executeTake(n: Int): Array[InternalRow] = {
    throw new IllegalStateException("SubqueryExec.executeTake should never be called")
  }

  override def executeTail(n: Int): Array[InternalRow] = {
    throw new IllegalStateException("SubqueryExec.executeTail should never be called")
  }

  override def stringArgs: Iterator[Any] = Iterator(name, child) ++ Iterator(s"[id=#$id]")

  override protected def withNewChildInternal(newChild: SparkPlan): SubqueryExec =
    copy(child = newChild)
}

object SubqueryExec {
  private[execution] val executionContext = ExecutionContext.fromExecutorService(
    ThreadUtils.newDaemonCachedThreadPool("subquery",
      SQLConf.get.getConf(StaticSQLConf.SUBQUERY_MAX_THREAD_THRESHOLD)))

  def createForScalarSubquery(name: String, child: SparkPlan): SubqueryExec = {
    // Scalar subquery needs only one row. We require 2 rows here to validate if the scalar query is
    // invalid(return more than one row). We don't need all the rows as it may OOM.
    SubqueryExec(name, child, maxNumRows = Some(2))
  }
}

/**
 * A wrapper for reused [[BaseSubqueryExec]].
 */
case class ReusedSubqueryExec(child: BaseSubqueryExec)
  extends BaseSubqueryExec with LeafExecNode {

  override def name: String = child.name

  override def output: Seq[Attribute] = child.output
  override def doCanonicalize(): SparkPlan = child.canonicalized
  override def outputOrdering: Seq[SortOrder] = child.outputOrdering
  override def outputPartitioning: Partitioning = child.outputPartitioning

  protected override def doPrepare(): Unit = child.prepare()

  protected override def doExecute(): RDD[InternalRow] = child.execute()

  override def executeCollect(): Array[InternalRow] = child.executeCollect()
}

相关信息

spark 源码目录

相关文章

spark AggregatingAccumulator 源码

spark AliasAwareOutputExpression 源码

spark BaseScriptTransformationExec 源码

spark CacheManager 源码

spark CoGroupedIterator 源码

spark CollectMetricsExec 源码

spark Columnar 源码

spark CommandResultExec 源码

spark DataSourceScanExec 源码

spark ExistingRDD 源码

0  赞