hadoop Reducer 源码

  • 2022-10-20
  • 浏览 (144)

haddop Reducer 代码

文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapred/Reducer.java

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.mapred;

import java.io.IOException;

import java.util.Iterator;

import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.io.Closeable;

/** 
 * Reduces a set of intermediate values which share a key to a smaller set of
 * values.  
 * 
 * <p>The number of <code>Reducer</code>s for the job is set by the user via 
 * {@link JobConf#setNumReduceTasks(int)}. <code>Reducer</code> implementations 
 * can access the {@link JobConf} for the job via the 
 * {@link JobConfigurable#configure(JobConf)} method and initialize themselves. 
 * Similarly they can use the {@link Closeable#close()} method for
 * de-initialization.</p>

 * <p><code>Reducer</code> has 3 primary phases:</p>
 * <ol>
 *   <li>
 *   
 *   <b id="Shuffle">Shuffle</b>
 *   
 *   <p><code>Reducer</code> is input the grouped output of a {@link Mapper}.
 *   In the phase the framework, for each <code>Reducer</code>, fetches the 
 *   relevant partition of the output of all the <code>Mapper</code>s, via HTTP. 
 *   </p>
 *   </li>
 *   
 *   <li>
 *   <b id="Sort">Sort</b>
 *   
 *   <p>The framework groups <code>Reducer</code> inputs by <code>key</code>s 
 *   (since different <code>Mapper</code>s may have output the same key) in this
 *   stage.</p>
 *   
 *   <p>The shuffle and sort phases occur simultaneously i.e. while outputs are
 *   being fetched they are merged.</p>
 *      
 *   <b id="SecondarySort">SecondarySort</b>
 *   
 *   <p>If equivalence rules for keys while grouping the intermediates are 
 *   different from those for grouping keys before reduction, then one may 
 *   specify a <code>Comparator</code> via 
 *   {@link JobConf#setOutputValueGroupingComparator(Class)}.Since 
 *   {@link JobConf#setOutputKeyComparatorClass(Class)} can be used to 
 *   control how intermediate keys are grouped, these can be used in conjunction 
 *   to simulate <i>secondary sort on values</i>.</p>
 *   
 *   
 *   For example, say that you want to find duplicate web pages and tag them 
 *   all with the url of the "best" known example. You would set up the job 
 *   like:
 *   <ul>
 *     <li>Map Input Key: url</li>
 *     <li>Map Input Value: document</li>
 *     <li>Map Output Key: document checksum, url pagerank</li>
 *     <li>Map Output Value: url</li>
 *     <li>Partitioner: by checksum</li>
 *     <li>OutputKeyComparator: by checksum and then decreasing pagerank</li>
 *     <li>OutputValueGroupingComparator: by checksum</li>
 *   </ul>
 *   </li>
 *   
 *   <li>   
 *   <b id="Reduce">Reduce</b>
 *   
 *   <p>In this phase the 
 *   {@link #reduce(Object, Iterator, OutputCollector, Reporter)}
 *   method is called for each <code>&lt;key, (list of values)&gt;</code> pair in
 *   the grouped inputs.</p>
 *   <p>The output of the reduce task is typically written to the 
 *   {@link FileSystem} via 
 *   {@link OutputCollector#collect(Object, Object)}.</p>
 *   </li>
 * </ol>
 * 
 * <p>The output of the <code>Reducer</code> is <b>not re-sorted</b>.</p>
 * 
 * <p>Example:</p>
 * <p><blockquote><pre>
 *     public class MyReducer&lt;K extends WritableComparable, V extends Writable&gt; 
 *     extends MapReduceBase implements Reducer&lt;K, V, K, V&gt; {
 *     
 *       static enum MyCounters { NUM_RECORDS }
 *        
 *       private String reduceTaskId;
 *       private int noKeys = 0;
 *       
 *       public void configure(JobConf job) {
 *         reduceTaskId = job.get(JobContext.TASK_ATTEMPT_ID);
 *       }
 *       
 *       public void reduce(K key, Iterator&lt;V&gt; values,
 *                          OutputCollector&lt;K, V&gt; output, 
 *                          Reporter reporter)
 *       throws IOException {
 *       
 *         // Process
 *         int noValues = 0;
 *         while (values.hasNext()) {
 *           V value = values.next();
 *           
 *           // Increment the no. of values for this key
 *           ++noValues;
 *           
 *           // Process the &lt;key, value&gt; pair (assume this takes a while)
 *           // ...
 *           // ...
 *           
 *           // Let the framework know that we are alive, and kicking!
 *           if ((noValues%10) == 0) {
 *             reporter.progress();
 *           }
 *         
 *           // Process some more
 *           // ...
 *           // ...
 *           
 *           // Output the &lt;key, value&gt; 
 *           output.collect(key, value);
 *         }
 *         
 *         // Increment the no. of &lt;key, list of values&gt; pairs processed
 *         ++noKeys;
 *         
 *         // Increment counters
 *         reporter.incrCounter(NUM_RECORDS, 1);
 *         
 *         // Every 100 keys update application-level status
 *         if ((noKeys%100) == 0) {
 *           reporter.setStatus(reduceTaskId + " processed " + noKeys);
 *         }
 *       }
 *     }
 * </pre></blockquote>
 * 
 * @see Mapper
 * @see Partitioner
 * @see Reporter
 * @see MapReduceBase
 */
@InterfaceAudience.Public
@InterfaceStability.Stable
public interface Reducer<K2, V2, K3, V3> extends JobConfigurable, Closeable {
  
  /** 
   * <i>Reduces</i> values for a given key.  
   * 
   * <p>The framework calls this method for each 
   * <code>&lt;key, (list of values)&gt;</code> pair in the grouped inputs.
   * Output values must be of the same type as input values.  Input keys must 
   * not be altered. The framework will <b>reuse</b> the key and value objects
   * that are passed into the reduce, therefore the application should clone
   * the objects they want to keep a copy of. In many cases, all values are 
   * combined into zero or one value.
   * </p>
   *   
   * <p>Output pairs are collected with calls to  
   * {@link OutputCollector#collect(Object,Object)}.</p>
   *
   * <p>Applications can use the {@link Reporter} provided to report progress 
   * or just indicate that they are alive. In scenarios where the application 
   * takes a significant amount of time to process individual key/value 
   * pairs, this is crucial since the framework might assume that the task has 
   * timed-out and kill that task. The other way of avoiding this is to set 
   * <a href="{@docRoot}/../hadoop-mapreduce-client/hadoop-mapreduce-client-core/mapred-default.xml#mapreduce.task.timeout">
   * mapreduce.task.timeout</a> to a high-enough value (or even zero for no 
   * time-outs).</p>
   * 
   * @param key the key.
   * @param values the list of values to reduce.
   * @param output to collect keys and combined values.
   * @param reporter facility to report progress.
   */
  void reduce(K2 key, Iterator<V2> values,
              OutputCollector<K3, V3> output, Reporter reporter)
    throws IOException;

}

相关信息

hadoop 源码目录

相关文章

hadoop AMFeedback 源码

hadoop BackupStore 源码

hadoop BasicTypeSorterBase 源码

hadoop BufferSorter 源码

hadoop CleanupQueue 源码

hadoop Clock 源码

hadoop ClusterStatus 源码

hadoop Counters 源码

hadoop CumulativePeriodicStats 源码

hadoop DeprecatedQueueConfigurationParser 源码

0  赞