go object 源码

  • 2022-07-15
  • 浏览 (1168)

golang object 代码

文件路径:/src/cmd/compile/internal/noder/object.go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package noder

import (
	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/syntax"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/compile/internal/types2"
	"cmd/internal/src"
)

func (g *irgen) def(name *syntax.Name) (*ir.Name, types2.Object) {
	obj, ok := g.info.Defs[name]
	if !ok {
		base.FatalfAt(g.pos(name), "unknown name %v", name)
	}
	return g.obj(obj), obj
}

// use returns the Name or InstExpr node associated with the use of name,
// possibly instantiated by type arguments. The returned node will have
// the correct type and be marked as typechecked.
func (g *irgen) use(name *syntax.Name) ir.Node {
	obj2, ok := g.info.Uses[name]
	if !ok {
		base.FatalfAt(g.pos(name), "unknown name %v", name)
	}
	obj := ir.CaptureName(g.pos(name), ir.CurFunc, g.obj(obj2))
	if obj.Defn != nil && obj.Defn.Op() == ir.ONAME {
		// If CaptureName created a closure variable, then transfer the
		// type of the captured name to the new closure variable.
		obj.SetTypecheck(1)
		obj.SetType(obj.Defn.Type())
	}

	if obj.Class == ir.PFUNC {
		if inst, ok := g.info.Instances[name]; ok {
			// This is the case where inferring types required the
			// types of the function arguments.
			targs := make([]ir.Ntype, inst.TypeArgs.Len())
			for i := range targs {
				targs[i] = ir.TypeNode(g.typ(inst.TypeArgs.At(i)))
			}
			typ := g.substType(obj.Type(), obj.Type().TParams(), targs)
			return typed(typ, ir.NewInstExpr(g.pos(name), ir.OFUNCINST, obj, targs))
		}
	}

	return obj
}

// obj returns the Name that represents the given object. If no such Name exists
// yet, it will be implicitly created. The returned node will have the correct
// type and be marked as typechecked.
//
// For objects declared at function scope, ir.CurFunc must already be
// set to the respective function when the Name is created.
func (g *irgen) obj(obj types2.Object) *ir.Name {
	// For imported objects, we use iimport directly instead of mapping
	// the types2 representation.
	if obj.Pkg() != g.self {
		if sig, ok := obj.Type().(*types2.Signature); ok && sig.Recv() != nil {
			// We can't import a method by name - must import the type
			// and access the method from it.
			base.FatalfAt(g.pos(obj), "tried to import a method directly")
		}
		sym := g.sym(obj)
		if sym.Def != nil {
			return sym.Def.(*ir.Name)
		}
		n := typecheck.Resolve(ir.NewIdent(src.NoXPos, sym))
		if n, ok := n.(*ir.Name); ok {
			n.SetTypecheck(1)
			return n
		}
		base.FatalfAt(g.pos(obj), "failed to resolve %v", obj)
	}

	if name, ok := g.objs[obj]; ok {
		return name // previously mapped
	}

	var name *ir.Name
	pos := g.pos(obj)

	class := typecheck.DeclContext
	if obj.Parent() == g.self.Scope() {
		class = ir.PEXTERN // forward reference to package-block declaration
	}

	// "You are in a maze of twisting little passages, all different."
	switch obj := obj.(type) {
	case *types2.Const:
		name = g.objCommon(pos, ir.OLITERAL, g.sym(obj), class, g.typ(obj.Type()))

	case *types2.Func:
		sig := obj.Type().(*types2.Signature)
		var sym *types.Sym
		var typ *types.Type
		if recv := sig.Recv(); recv == nil {
			if obj.Name() == "init" {
				sym = Renameinit()
			} else {
				sym = g.sym(obj)
			}
			typ = g.typ(sig)
		} else {
			sym = g.selector(obj)
			if !sym.IsBlank() {
				sym = ir.MethodSym(g.typ(recv.Type()), sym)
			}
			typ = g.signature(g.param(recv), sig)
		}
		name = g.objCommon(pos, ir.ONAME, sym, ir.PFUNC, typ)

	case *types2.TypeName:
		if obj.IsAlias() {
			name = g.objCommon(pos, ir.OTYPE, g.sym(obj), class, g.typ(obj.Type()))
			name.SetAlias(true)
		} else {
			name = ir.NewDeclNameAt(pos, ir.OTYPE, g.sym(obj))
			g.objFinish(name, class, types.NewNamed(name))
		}

	case *types2.Var:
		sym := g.sym(obj)
		if class == ir.PPARAMOUT && (sym == nil || sym.IsBlank()) {
			// Backend needs names for result parameters,
			// even if they're anonymous or blank.
			nresults := 0
			for _, n := range ir.CurFunc.Dcl {
				if n.Class == ir.PPARAMOUT {
					nresults++
				}
			}
			if sym == nil {
				sym = typecheck.LookupNum("~r", nresults) // 'r' for "result"
			} else {
				sym = typecheck.LookupNum("~b", nresults) // 'b' for "blank"
			}
		}
		name = g.objCommon(pos, ir.ONAME, sym, class, g.typ(obj.Type()))

	default:
		g.unhandled("object", obj)
	}

	g.objs[obj] = name
	name.SetTypecheck(1)
	return name
}

func (g *irgen) objCommon(pos src.XPos, op ir.Op, sym *types.Sym, class ir.Class, typ *types.Type) *ir.Name {
	name := ir.NewDeclNameAt(pos, op, sym)
	g.objFinish(name, class, typ)
	return name
}

func (g *irgen) objFinish(name *ir.Name, class ir.Class, typ *types.Type) {
	sym := name.Sym()

	name.SetType(typ)
	name.Class = class
	if name.Class == ir.PFUNC {
		sym.SetFunc(true)
	}

	name.SetTypecheck(1)

	if ir.IsBlank(name) {
		return
	}

	switch class {
	case ir.PEXTERN:
		g.target.Externs = append(g.target.Externs, name)
		fallthrough
	case ir.PFUNC:
		sym.Def = name
		if name.Class == ir.PFUNC && name.Type().Recv() != nil {
			break // methods are exported with their receiver type
		}
		if types.IsExported(sym.Name) {
			// Generic functions can be marked for export here, even
			// though they will not be compiled until instantiated.
			typecheck.Export(name)
		}
		if base.Flag.AsmHdr != "" && !name.Sym().Asm() {
			name.Sym().SetAsm(true)
			g.target.Asms = append(g.target.Asms, name)
		}

	default:
		// Function-scoped declaration.
		name.Curfn = ir.CurFunc
		if name.Op() == ir.ONAME {
			ir.CurFunc.Dcl = append(ir.CurFunc.Dcl, name)
		}
	}
}

相关信息

go 源码目录

相关文章

go codes 源码

go decl 源码

go export 源码

go expr 源码

go func 源码

go helpers 源码

go import 源码

go irgen 源码

go lex 源码

go lex_test 源码

0  赞