kafka TimeOrderedCachingWindowStore 源码

  • 2022-10-20
  • 浏览 (242)

kafka TimeOrderedCachingWindowStore 代码

文件路径:/streams/src/main/java/org/apache/kafka/streams/state/internals/TimeOrderedCachingWindowStore.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.streams.state.internals;

import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.function.Function;
import org.apache.kafka.common.header.internals.RecordHeaders;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.common.utils.Bytes;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Windowed;
import org.apache.kafka.streams.kstream.internals.Change;
import org.apache.kafka.streams.processor.ProcessorContext;
import org.apache.kafka.streams.processor.StateStore;
import org.apache.kafka.streams.processor.StateStoreContext;
import org.apache.kafka.streams.processor.api.Record;
import org.apache.kafka.streams.processor.internals.InternalProcessorContext;
import org.apache.kafka.streams.processor.internals.ProcessorRecordContext;
import org.apache.kafka.streams.processor.internals.ProcessorStateManager;
import org.apache.kafka.streams.processor.internals.RecordQueue;
import org.apache.kafka.streams.state.KeyValueIterator;
import org.apache.kafka.streams.state.StateSerdes;
import org.apache.kafka.streams.state.WindowStore;
import org.apache.kafka.streams.state.WindowStoreIterator;
import org.apache.kafka.streams.state.internals.MergedSortedCacheWindowStoreKeyValueIterator.StoreKeyToWindowKey;
import org.apache.kafka.streams.state.internals.MergedSortedCacheWindowStoreKeyValueIterator.WindowKeyToBytes;
import org.apache.kafka.streams.state.internals.PrefixedWindowKeySchemas.KeyFirstWindowKeySchema;
import org.apache.kafka.streams.state.internals.PrefixedWindowKeySchemas.TimeFirstWindowKeySchema;
import org.apache.kafka.streams.state.internals.SegmentedBytesStore.KeySchema;
import org.apache.kafka.streams.state.internals.ThreadCache.DirtyEntry;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.LinkedList;
import java.util.NoSuchElementException;
import java.util.concurrent.atomic.AtomicLong;

import static org.apache.kafka.streams.processor.internals.ProcessorContextUtils.asInternalProcessorContext;
import static org.apache.kafka.streams.state.internals.ExceptionUtils.executeAll;
import static org.apache.kafka.streams.state.internals.ExceptionUtils.throwSuppressed;

class TimeOrderedCachingWindowStore
    extends WrappedStateStore<WindowStore<Bytes, byte[]>, byte[], byte[]>
    implements WindowStore<Bytes, byte[]>, CachedStateStore<byte[], byte[]> {

    private static final Logger LOG = LoggerFactory.getLogger(TimeOrderedCachingWindowStore.class);

    private final long windowSize;
    private final SegmentedCacheFunction baseKeyCacheFunction;
    private final SegmentedCacheFunction indexKeyCacheFunction;
    private final TimeFirstWindowKeySchema baseKeySchema = new TimeFirstWindowKeySchema();
    private final KeyFirstWindowKeySchema indexKeySchema = new KeyFirstWindowKeySchema();

    private String cacheName;
    private boolean hasIndex;
    private boolean sendOldValues;
    private InternalProcessorContext<?, ?> context;
    private StateSerdes<Bytes, byte[]> bytesSerdes;
    private CacheFlushListener<byte[], byte[]> flushListener;

    private final AtomicLong maxObservedTimestamp;

    TimeOrderedCachingWindowStore(final WindowStore<Bytes, byte[]> underlying,
                                  final long windowSize,
                                  final long segmentInterval) {
        super(underlying);
        this.windowSize = windowSize;
        this.baseKeyCacheFunction = new SegmentedCacheFunction(baseKeySchema, segmentInterval);
        this.indexKeyCacheFunction = new SegmentedCacheFunction(indexKeySchema, segmentInterval);
        this.maxObservedTimestamp = new AtomicLong(RecordQueue.UNKNOWN);
        enforceWrappedStore(underlying);
    }

    private void enforceWrappedStore(final WindowStore<Bytes, byte[]> underlying) {
        final RocksDBTimeOrderedWindowStore timeOrderedWindowStore = getWrappedStore(underlying);
        if (timeOrderedWindowStore == null) {
            throw new IllegalArgumentException("TimeOrderedCachingWindowStore only supports RocksDBTimeOrderedWindowStore backed store");
        }

        hasIndex = timeOrderedWindowStore.hasIndex();
    }

    private RocksDBTimeOrderedWindowStore getWrappedStore(final StateStore wrapped) {
        if (wrapped instanceof RocksDBTimeOrderedWindowStore) {
            return (RocksDBTimeOrderedWindowStore) wrapped;
        }
        if (wrapped instanceof WrappedStateStore) {
            return getWrappedStore(((WrappedStateStore) wrapped).wrapped());
        }
        return null;
    }

    @Deprecated
    @Override
    public void init(final ProcessorContext context, final StateStore root) {
        initInternal(asInternalProcessorContext(context));
        super.init(context, root);
    }

    @Override
    public void init(final StateStoreContext context, final StateStore root) {
        initInternal(asInternalProcessorContext(context));
        super.init(context, root);
    }

    private void initInternal(final InternalProcessorContext<?, ?> context) {
        final String prefix = StreamsConfig.InternalConfig.getString(
            context.appConfigs(),
            StreamsConfig.InternalConfig.TOPIC_PREFIX_ALTERNATIVE,
            context.applicationId()
        );
        this.context = context;
        final String topic = ProcessorStateManager.storeChangelogTopic(prefix, name(),  context.taskId().topologyName());

        bytesSerdes = new StateSerdes<>(
            topic,
            Serdes.Bytes(),
            Serdes.ByteArray());
        cacheName = context.taskId() + "-" + name();

        context.registerCacheFlushListener(cacheName, entries -> {
            putAndMaybeForward(entries, context);
        });
    }

    private void putAndMaybeForward(final List<DirtyEntry> entries,
                                    final InternalProcessorContext<?, ?> context) {

        // Track what base key or index key we already processed so don't reprocess
        final Set<Bytes> processedBasedKey = new HashSet<>();

        for (final ThreadCache.DirtyEntry entry : entries) {
            final byte[] binaryWindowKey = baseKeyCacheFunction.key(entry.key()).get();
            final boolean isBaseKey = PrefixedWindowKeySchemas.isTimeFirstSchemaKey(
                binaryWindowKey);

            final DirtyEntry finalEntry;
            if (!isBaseKey) {
                final Bytes baseKey = indexKeyToBaseKey(Bytes.wrap(binaryWindowKey));
                if (hasIndex && processedBasedKey.contains(baseKey)) {
                    // Processed in base
                    continue;
                }

                final Bytes cachedBaseKey = baseKeyCacheFunction.cacheKey(baseKey);
                final LRUCacheEntry value = context.cache().get(cacheName, cachedBaseKey);
                // Base key value is already evicted, which should be handled already
                if (value == null) {
                    continue;
                }

                finalEntry = new DirtyEntry(entry.key(), value.value(), value);

                if (hasIndex) {
                    processedBasedKey.add(baseKey);
                }
            } else {
                final Bytes baseKey = Bytes.wrap(binaryWindowKey);
                if (hasIndex && processedBasedKey.contains(baseKey)) {
                    // Processed in index
                    continue;
                }
                finalEntry = entry;
                if (hasIndex) {
                    processedBasedKey.add(Bytes.wrap(binaryWindowKey));
                }
            }

            final Windowed<Bytes> windowedKeyBytes;
            if (isBaseKey) {
                windowedKeyBytes = TimeFirstWindowKeySchema.fromStoreBytesKey(binaryWindowKey,
                    windowSize);
            } else {
                windowedKeyBytes = KeyFirstWindowKeySchema.fromStoreBytesKey(binaryWindowKey,
                    windowSize);
            }

            final long windowStartTimestamp = windowedKeyBytes.window().start();
            final Bytes binaryKey = windowedKeyBytes.key();

            putAndMaybeForward(context, finalEntry, binaryKey, windowStartTimestamp);
        }
    }

    private void putAndMaybeForward(final InternalProcessorContext<?, ?> context,
                                    final DirtyEntry finalEntry,
                                    final Bytes binaryKey,
                                    final long windowStartTimestamp) {
        if (flushListener != null) {
            final byte[] rawNewValue = finalEntry.newValue();
            final byte[] rawOldValue = rawNewValue == null || sendOldValues ?
                wrapped().fetch(binaryKey, windowStartTimestamp) : null;

            // this is an optimization: if this key did not exist in underlying store and also not in the cache,
            // we can skip flushing to downstream as well as writing to underlying store
            if (rawNewValue != null || rawOldValue != null) {
                // we need to get the old values if needed, and then put to store, and then flush
                final ProcessorRecordContext current = context.recordContext();
                try {
                    context.setRecordContext(finalEntry.entry().context());
                    wrapped().put(binaryKey, finalEntry.newValue(), windowStartTimestamp);

                    flushListener.apply(
                        new Record<>(
                            WindowKeySchema.toStoreKeyBinary(binaryKey,
                                    windowStartTimestamp, 0)
                                .get(),
                            new Change<>(rawNewValue, sendOldValues ? rawOldValue : null),
                            finalEntry.entry().context().timestamp(),
                            finalEntry.entry().context().headers()));
                } finally {
                    context.setRecordContext(current);
                }
            }
        } else {
            final ProcessorRecordContext current = context.recordContext();
            try {
                context.setRecordContext(finalEntry.entry().context());
                wrapped().put(binaryKey, finalEntry.newValue(), windowStartTimestamp);
            } finally {
                context.setRecordContext(current);
            }
        }
    }

    @Override
    public boolean setFlushListener(final CacheFlushListener<byte[], byte[]> flushListener,
                                    final boolean sendOldValues) {
        this.flushListener = flushListener;
        this.sendOldValues = sendOldValues;

        return true;
    }

    private Bytes indexKeyToBaseKey(final Bytes indexKey) {
        final byte[] key = KeyFirstWindowKeySchema.extractStoreKeyBytes(indexKey.get());
        final long timestamp = KeyFirstWindowKeySchema.extractStoreTimestamp(indexKey.get());
        final int seqnum = KeyFirstWindowKeySchema.extractStoreSequence(indexKey.get());
        return TimeFirstWindowKeySchema.toStoreKeyBinary(key, timestamp, seqnum);
    }

    @Override
    public synchronized void put(final Bytes key,
                                 final byte[] value,
                                 final long windowStartTimestamp) {
        // since this function may not access the underlying inner store, we need to validate
        // if store is open outside as well.
        validateStoreOpen();

        final Bytes baseKeyBytes = TimeFirstWindowKeySchema.toStoreKeyBinary(key, windowStartTimestamp, 0);
        final LRUCacheEntry entry =
            new LRUCacheEntry(
                value,
                context.headers(),
                true,
                context.offset(),
                context.timestamp(),
                context.partition(),
                context.topic());

        // Put to index first so that base can be evicted later
        if (hasIndex) {
            // Important: put base key first to avoid the situation that if we put index first,
            // it could be evicted when we are putting base key. In that case, base key is not yet
            // in cache so we can't store key/value to store when index is evicted. Then if we fetch
            // using index, we can't find it in either store or cache
            context.cache().put(cacheName, baseKeyCacheFunction.cacheKey(baseKeyBytes), entry);
            final LRUCacheEntry emptyEntry =
                new LRUCacheEntry(
                    new byte[0],
                    new RecordHeaders(),
                    true,
                    context.offset(),
                    context.timestamp(),
                    context.partition(),
                    "");
            final Bytes indexKey = KeyFirstWindowKeySchema.toStoreKeyBinary(key, windowStartTimestamp, 0);
            context.cache().put(cacheName, indexKeyCacheFunction.cacheKey(indexKey), emptyEntry);
        } else {
            context.cache().put(cacheName, baseKeyCacheFunction.cacheKey(baseKeyBytes), entry);
        }
        maxObservedTimestamp.set(Math.max(windowStartTimestamp, maxObservedTimestamp.get()));
    }

    @Override
    public byte[] fetch(final Bytes key,
                        final long timestamp) {
        validateStoreOpen();
        if (context.cache() == null) {
            return wrapped().fetch(key, timestamp);
        }

        final Bytes baseBytesKey = TimeFirstWindowKeySchema.toStoreKeyBinary(key, timestamp, 0);
        final Bytes cacheKey = baseKeyCacheFunction.cacheKey(baseBytesKey);

        final LRUCacheEntry entry = context.cache().get(cacheName, cacheKey);
        if (entry == null) {
            return wrapped().fetch(key, timestamp);
        } else {
            return entry.value();
        }
    }

    @Override
    public synchronized WindowStoreIterator<byte[]> fetch(final Bytes key,
                                                          final long timeFrom,
                                                          final long timeTo) {
        // since this function may not access the underlying inner store, we need to validate
        // if store is open outside as well.
        validateStoreOpen();

        final WindowStoreIterator<byte[]> underlyingIterator = wrapped().fetch(key, timeFrom, timeTo);
        if (context.cache() == null) {
            return underlyingIterator;
        }

        return fetchInternal(underlyingIterator, key, timeFrom, timeTo, true);
    }

    @Override
    public synchronized WindowStoreIterator<byte[]> backwardFetch(final Bytes key,
                                                                  final long timeFrom,
                                                                  final long timeTo) {
        // since this function may not access the underlying inner store, we need to validate
        // if store is open outside as well.
        validateStoreOpen();

        final WindowStoreIterator<byte[]> underlyingIterator = wrapped().backwardFetch(key, timeFrom, timeTo);
        if (context.cache() == null) {
            return underlyingIterator;
        }

        return fetchInternal(underlyingIterator, key, timeFrom, timeTo, false);
    }

    private WindowStoreIterator<byte[]> fetchInternal(final WindowStoreIterator<byte[]> underlyingIterator,
                                                      final Bytes key,
                                                      final long timeFrom,
                                                      final long timeTo,
                                                      final boolean forward) {
        final PeekingKeyValueIterator<Bytes, LRUCacheEntry> cacheIterator = new CacheIteratorWrapper(
            key, timeFrom, timeTo, forward, hasIndex);
        final KeySchema keySchema = hasIndex ? indexKeySchema : baseKeySchema;
        final SegmentedCacheFunction cacheFunction = hasIndex ? indexKeyCacheFunction : baseKeyCacheFunction;
        final HasNextCondition hasNextCondition = keySchema.hasNextCondition(key, key, timeFrom, timeTo, forward);

        final PeekingKeyValueIterator<Bytes, LRUCacheEntry> filteredCacheIterator =
            new FilteredCacheIterator(cacheIterator, hasNextCondition, cacheFunction);

        final Function<byte[], Long> tsExtractor = hasIndex ? KeyFirstWindowKeySchema::extractStoreTimestamp
            : TimeFirstWindowKeySchema::extractStoreTimestamp;
        return new MergedSortedCacheWindowStoreIterator(filteredCacheIterator, underlyingIterator, forward, tsExtractor);
    }

    @Override
    public KeyValueIterator<Windowed<Bytes>, byte[]> fetch(final Bytes keyFrom,
                                                           final Bytes keyTo,
                                                           final long timeFrom,
                                                           final long timeTo) {
        if (keyFrom != null && keyTo != null && keyFrom.compareTo(keyTo) > 0) {
            LOG.warn("Returning empty iterator for fetch with invalid key range: from > to. " +
                "This may be due to range arguments set in the wrong order, " +
                "or serdes that don't preserve ordering when lexicographically comparing the serialized bytes. " +
                "Note that the built-in numerical serdes do not follow this for negative numbers");
            return KeyValueIterators.emptyIterator();
        }

        // since this function may not access the underlying inner store, we need to validate
        // if store is open outside as well.
        validateStoreOpen();

        final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator =
            wrapped().fetch(keyFrom, keyTo, timeFrom, timeTo);
        if (context.cache() == null) {
            return underlyingIterator;
        }

        return fetchKeyRange(underlyingIterator, keyFrom, keyTo, timeFrom, timeTo, true);
    }

    @Override
    public KeyValueIterator<Windowed<Bytes>, byte[]> backwardFetch(final Bytes keyFrom,
                                                                   final Bytes keyTo,
                                                                   final long timeFrom,
                                                                   final long timeTo) {
        if (keyFrom != null && keyTo != null && keyFrom.compareTo(keyTo) > 0) {
            LOG.warn("Returning empty iterator for fetch with invalid key range: from > to. "
                + "This may be due to serdes that don't preserve ordering when lexicographically comparing the serialized bytes. " +
                "Note that the built-in numerical serdes do not follow this for negative numbers");
            return KeyValueIterators.emptyIterator();
        }

        // since this function may not access the underlying inner store, we need to validate
        // if store is open outside as well.
        validateStoreOpen();

        final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator =
            wrapped().backwardFetch(keyFrom, keyTo, timeFrom, timeTo);
        if (context.cache() == null) {
            return underlyingIterator;
        }

        return fetchKeyRange(underlyingIterator, keyFrom, keyTo, timeFrom, timeTo, false);
    }

    private KeyValueIterator<Windowed<Bytes>, byte[]> fetchKeyRange(final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator,
                                                                    final Bytes keyFrom,
                                                                    final Bytes keyTo,
                                                                    final long timeFrom,
                                                                    final long timeTo,
                                                                    final boolean forward) {
        final PeekingKeyValueIterator<Bytes, LRUCacheEntry> cacheIterator = new CacheIteratorWrapper(
            keyFrom, keyTo, timeFrom, timeTo, forward, hasIndex);

        final KeySchema keySchema = hasIndex ? indexKeySchema : baseKeySchema;
        final HasNextCondition hasNextCondition = keySchema.hasNextCondition(keyFrom, keyTo, timeFrom, timeTo, forward);
        final SegmentedCacheFunction cacheFunction = hasIndex ? indexKeyCacheFunction : baseKeyCacheFunction;

        final PeekingKeyValueIterator<Bytes, LRUCacheEntry> filteredCacheIterator =
            new FilteredCacheIterator(cacheIterator, hasNextCondition, cacheFunction);
        final StoreKeyToWindowKey storeKeyToWindowKey = hasIndex ? KeyFirstWindowKeySchema::fromStoreKey : TimeFirstWindowKeySchema::fromStoreKey;
        final WindowKeyToBytes windowKeyToBytes = hasIndex ? KeyFirstWindowKeySchema::toStoreKeyBinary : TimeFirstWindowKeySchema::toStoreKeyBinary;

        return new MergedSortedCacheWindowStoreKeyValueIterator(
            filteredCacheIterator,
            underlyingIterator,
            bytesSerdes,
            windowSize,
            cacheFunction,
            forward,
            storeKeyToWindowKey,
            windowKeyToBytes
        );
    }

    @Override
    public KeyValueIterator<Windowed<Bytes>, byte[]> fetchAll(final long timeFrom,
                                                              final long timeTo) {
        validateStoreOpen();

        final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator = wrapped().fetchAll(timeFrom, timeTo);
        return fetchAllInternal(underlyingIterator, timeFrom, timeTo, true);
    }

    @Override
    public KeyValueIterator<Windowed<Bytes>, byte[]> backwardFetchAll(final long timeFrom,
                                                                      final long timeTo) {
        validateStoreOpen();

        final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator = wrapped().backwardFetchAll(timeFrom, timeTo);
        return fetchAllInternal(underlyingIterator, timeFrom, timeTo, false);
    }

    private KeyValueIterator<Windowed<Bytes>, byte[]> fetchAllInternal(final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator,
                                                                       final long timeFrom,
                                                                       final long timeTo,
                                                                       final boolean forward) {
        final PeekingKeyValueIterator<Bytes, LRUCacheEntry> cacheIterator = new CacheIteratorWrapper(
            null, null, timeFrom, timeTo, forward, false);
        final HasNextCondition hasNextCondition = baseKeySchema.hasNextCondition(null, null, timeFrom, timeTo, forward);
        final PeekingKeyValueIterator<Bytes, LRUCacheEntry> filteredCacheIterator =
            new FilteredCacheIterator(cacheIterator, hasNextCondition, baseKeyCacheFunction);

        final StoreKeyToWindowKey storeKeyToWindowKey = TimeFirstWindowKeySchema::fromStoreKey;
        final WindowKeyToBytes windowKeyToBytes = TimeFirstWindowKeySchema::toStoreKeyBinary;

        return new MergedSortedCacheWindowStoreKeyValueIterator(
            filteredCacheIterator,
            underlyingIterator,
            bytesSerdes,
            windowSize,
            baseKeyCacheFunction,
            forward,
            storeKeyToWindowKey,
            windowKeyToBytes
        );
    }

    @Override
    public KeyValueIterator<Windowed<Bytes>, byte[]> all() {
        validateStoreOpen();

        final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator = wrapped().all();
        return fetchAllInternal(underlyingIterator, 0, Long.MAX_VALUE, true);
    }

    @Override
    public KeyValueIterator<Windowed<Bytes>, byte[]> backwardAll() {
        validateStoreOpen();

        final KeyValueIterator<Windowed<Bytes>, byte[]> underlyingIterator = wrapped().backwardAll();
        return fetchAllInternal(underlyingIterator, 0, Long.MAX_VALUE, false);
    }

    @Override
    public synchronized void flush() {
        context.cache().flush(cacheName);
        wrapped().flush();
    }

    @Override
    public void flushCache() {
        context.cache().flush(cacheName);
    }

    @Override
    public synchronized void close() {
        final LinkedList<RuntimeException> suppressed = executeAll(
            () -> context.cache().flush(cacheName),
            () -> context.cache().close(cacheName),
            wrapped()::close
        );
        if (!suppressed.isEmpty()) {
            throwSuppressed("Caught an exception while closing caching window store for store " + name(),
                suppressed);
        }
    }


    private class CacheIteratorWrapper implements PeekingKeyValueIterator<Bytes, LRUCacheEntry> {

        private final long segmentInterval;
        private final Bytes keyFrom;
        private final Bytes keyTo;
        private final long timeTo;
        private final boolean forward;
        private final boolean useIndex; // If we are iterating from index

        private long lastSegmentId;
        private long currentSegmentId;
        private Bytes cacheKeyFrom;
        private Bytes cacheKeyTo;
        private LRUCacheEntry cachedBaseValue;
        private final SegmentedCacheFunction cacheFunction;

        private ThreadCache.MemoryLRUCacheBytesIterator current;

        private CacheIteratorWrapper(final Bytes key,
                                     final long timeFrom,
                                     final long timeTo,
                                     final boolean forward,
                                     final boolean index) {
            this(key, key, timeFrom, timeTo, forward, index);
        }

        private CacheIteratorWrapper(final Bytes keyFrom,
                                     final Bytes keyTo,
                                     final long timeFrom,
                                     final long timeTo,
                                     final boolean forward,
                                     final boolean index) {
            this.keyFrom = keyFrom;
            this.keyTo = keyTo;
            this.timeTo = timeTo;
            this.forward = forward;
            this.useIndex = index;

            cacheFunction = index ? indexKeyCacheFunction : baseKeyCacheFunction;

            this.segmentInterval = cacheFunction.getSegmentInterval();

            if (forward) {
                this.lastSegmentId = cacheFunction.segmentId(Math.min(timeTo, maxObservedTimestamp.get()));
                this.currentSegmentId = cacheFunction.segmentId(timeFrom);

                setCacheKeyRange(timeFrom, currentSegmentLastTime());
                this.current = context.cache().range(cacheName, cacheKeyFrom, cacheKeyTo);
            } else {
                this.currentSegmentId = cacheFunction.segmentId(Math.min(timeTo, maxObservedTimestamp.get()));
                this.lastSegmentId = cacheFunction.segmentId(timeFrom);

                setCacheKeyRange(currentSegmentBeginTime(), Math.min(timeTo, maxObservedTimestamp.get()));
                this.current = context.cache().reverseRange(cacheName, cacheKeyFrom, cacheKeyTo);
            }
        }

        @Override
        public boolean hasNext() {
            if (current == null) {
                return false;
            }

            if (useIndex) {
                do {
                    // If iterating from index, need to make sure base key/value exist in cache
                    while (current.hasNext()) {
                        final Bytes cacheIndexKey = current.peekNextKey();
                        final Bytes indexKey = indexKeyCacheFunction.key(cacheIndexKey);
                        final Bytes baseKey = indexKeyToBaseKey(indexKey);
                        final Bytes cachedBaseKey = baseKeyCacheFunction.cacheKey(baseKey);
                        cachedBaseValue = context.cache().get(cacheName, cachedBaseKey);
                        if (cachedBaseValue != null) {
                            return true;
                        }
                        current.next();
                    }
                    getNextSegmentIterator();
                } while (current != null);
                return false;
            }

            if (current.hasNext()) {
                return true;
            }

            while (!current.hasNext()) {
                getNextSegmentIterator();
                if (current == null) {
                    return false;
                }
            }
            return true;
        }

        @Override
        public Bytes peekNextKey() {
            if (!hasNext()) {
                throw new NoSuchElementException();
            }
            return current.peekNextKey();
        }

        @Override
        public KeyValue<Bytes, LRUCacheEntry> peekNext() {
            if (!hasNext()) {
                throw new NoSuchElementException();
            }
            if (useIndex) {
                final KeyValue<Bytes, LRUCacheEntry> kv = current.peekNext();
                return KeyValue.pair(kv.key, cachedBaseValue);
            }
            return current.peekNext();
        }

        @Override
        public KeyValue<Bytes, LRUCacheEntry> next() {
            if (!hasNext()) {
                throw new NoSuchElementException();
            }
            if (useIndex) {
                final KeyValue<Bytes, LRUCacheEntry> kv = current.next();
                return KeyValue.pair(kv.key, cachedBaseValue);
            }
            return current.next();
        }

        @Override
        public void close() {
            current.close();
        }

        private long currentSegmentBeginTime() {
            return currentSegmentId * segmentInterval;
        }

        private long currentSegmentLastTime() {
            return Math.min(timeTo, currentSegmentBeginTime() + segmentInterval - 1);
        }

        private void getNextSegmentIterator() {
            if (forward) {
                ++currentSegmentId;
                // updating as maxObservedTimestamp can change while iterating
                lastSegmentId = cacheFunction.segmentId(Math.min(timeTo, maxObservedTimestamp.get()));

                if (currentSegmentId > lastSegmentId) {
                    current = null;
                    return;
                }

                setCacheKeyRange(currentSegmentBeginTime(), currentSegmentLastTime());

                current.close();

                current = context.cache().range(cacheName, cacheKeyFrom, cacheKeyTo);
            } else {
                --currentSegmentId;

                // last segment id is stable when iterating backward, therefore no need to update
                if (currentSegmentId < lastSegmentId) {
                    current = null;
                    return;
                }

                setCacheKeyRange(currentSegmentBeginTime(), currentSegmentLastTime());

                current.close();

                current = context.cache().reverseRange(cacheName, cacheKeyFrom, cacheKeyTo);
            }
        }

        private void setCacheKeyRange(final long lowerRangeEndTime, final long upperRangeEndTime) {
            if (cacheFunction.segmentId(lowerRangeEndTime) != cacheFunction.segmentId(upperRangeEndTime)) {
                throw new IllegalStateException("Error iterating over segments: segment interval has changed");
            }

            final KeySchema schema = useIndex ? indexKeySchema : baseKeySchema;

            if (keyFrom != null && keyFrom.equals(keyTo)) {
                cacheKeyFrom = cacheFunction.cacheKey(schema.lowerRangeFixedSize(keyFrom, lowerRangeEndTime), currentSegmentId);
                cacheKeyTo = cacheFunction.cacheKey(schema.upperRangeFixedSize(keyTo, upperRangeEndTime), currentSegmentId);
            } else {
                cacheKeyFrom = cacheFunction.cacheKey(schema.lowerRange(keyFrom, lowerRangeEndTime), currentSegmentId);
                cacheKeyTo = cacheFunction.cacheKey(schema.upperRange(keyTo, timeTo), currentSegmentId);
            }
        }
    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractDualSchemaRocksDBSegmentedBytesStore 源码

kafka AbstractMergedSortedCacheStoreIterator 源码

kafka AbstractRocksDBSegmentedBytesStore 源码

kafka AbstractRocksDBTimeOrderedSegmentedBytesStore 源码

kafka AbstractSegments 源码

kafka AbstractStoreBuilder 源码

kafka BatchWritingStore 源码

kafka BlockBasedTableConfigWithAccessibleCache 源码

kafka BufferKey 源码

kafka BufferValue 源码

0  赞