spark JavaModelSelectionViaCrossValidationExample 源码

  • 2022-10-20
  • 浏览 (291)

spark JavaModelSelectionViaCrossValidationExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaModelSelectionViaCrossValidationExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import java.util.Arrays;
// $example off$

// $example on$
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.ml.tuning.CrossValidator;
import org.apache.spark.ml.tuning.CrossValidatorModel;
import org.apache.spark.ml.tuning.ParamGridBuilder;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;

/**
 * Java example for Model Selection via Cross Validation.
 */
public class JavaModelSelectionViaCrossValidationExample {
  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaModelSelectionViaCrossValidationExample")
      .getOrCreate();

    // $example on$
    // Prepare training documents, which are labeled.
    Dataset<Row> training = spark.createDataFrame(Arrays.asList(
      new JavaLabeledDocument(0L, "a b c d e spark", 1.0),
      new JavaLabeledDocument(1L, "b d", 0.0),
      new JavaLabeledDocument(2L,"spark f g h", 1.0),
      new JavaLabeledDocument(3L, "hadoop mapreduce", 0.0),
      new JavaLabeledDocument(4L, "b spark who", 1.0),
      new JavaLabeledDocument(5L, "g d a y", 0.0),
      new JavaLabeledDocument(6L, "spark fly", 1.0),
      new JavaLabeledDocument(7L, "was mapreduce", 0.0),
      new JavaLabeledDocument(8L, "e spark program", 1.0),
      new JavaLabeledDocument(9L, "a e c l", 0.0),
      new JavaLabeledDocument(10L, "spark compile", 1.0),
      new JavaLabeledDocument(11L, "hadoop software", 0.0)
    ), JavaLabeledDocument.class);

    // Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
    Tokenizer tokenizer = new Tokenizer()
      .setInputCol("text")
      .setOutputCol("words");
    HashingTF hashingTF = new HashingTF()
      .setNumFeatures(1000)
      .setInputCol(tokenizer.getOutputCol())
      .setOutputCol("features");
    LogisticRegression lr = new LogisticRegression()
      .setMaxIter(10)
      .setRegParam(0.01);
    Pipeline pipeline = new Pipeline()
      .setStages(new PipelineStage[] {tokenizer, hashingTF, lr});

    // We use a ParamGridBuilder to construct a grid of parameters to search over.
    // With 3 values for hashingTF.numFeatures and 2 values for lr.regParam,
    // this grid will have 3 x 2 = 6 parameter settings for CrossValidator to choose from.
    ParamMap[] paramGrid = new ParamGridBuilder()
      .addGrid(hashingTF.numFeatures(), new int[] {10, 100, 1000})
      .addGrid(lr.regParam(), new double[] {0.1, 0.01})
      .build();

    // We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
    // This will allow us to jointly choose parameters for all Pipeline stages.
    // A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
    // Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
    // is areaUnderROC.
    CrossValidator cv = new CrossValidator()
      .setEstimator(pipeline)
      .setEvaluator(new BinaryClassificationEvaluator())
      .setEstimatorParamMaps(paramGrid)
      .setNumFolds(2)  // Use 3+ in practice
      .setParallelism(2);  // Evaluate up to 2 parameter settings in parallel

    // Run cross-validation, and choose the best set of parameters.
    CrossValidatorModel cvModel = cv.fit(training);

    // Prepare test documents, which are unlabeled.
    Dataset<Row> test = spark.createDataFrame(Arrays.asList(
      new JavaDocument(4L, "spark i j k"),
      new JavaDocument(5L, "l m n"),
      new JavaDocument(6L, "mapreduce spark"),
      new JavaDocument(7L, "apache hadoop")
    ), JavaDocument.class);

    // Make predictions on test documents. cvModel uses the best model found (lrModel).
    Dataset<Row> predictions = cvModel.transform(test);
    for (Row r : predictions.select("id", "text", "probability", "prediction").collectAsList()) {
      System.out.println("(" + r.get(0) + ", " + r.get(1) + ") --> prob=" + r.get(2)
        + ", prediction=" + r.get(3));
    }
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞