hadoop ReduceTask 源码
haddop ReduceTask 代码
文件路径:/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-core/src/main/java/org/apache/hadoop/mapred/ReduceTask.java
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.mapred;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.Map;
import java.util.SortedSet;
import java.util.TreeSet;
import org.apache.hadoop.classification.InterfaceAudience;
import org.apache.hadoop.classification.InterfaceStability;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileSystem.Statistics;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DataInputBuffer;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableFactories;
import org.apache.hadoop.io.WritableFactory;
import org.apache.hadoop.io.SequenceFile.CompressionType;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.DefaultCodec;
import org.apache.hadoop.mapred.SortedRanges.SkipRangeIterator;
import org.apache.hadoop.mapreduce.MRConfig;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.TaskCounter;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter;
import org.apache.hadoop.mapreduce.task.reduce.Shuffle;
import org.apache.hadoop.util.Progress;
import org.apache.hadoop.util.Progressable;
import org.apache.hadoop.util.ReflectionUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/** A Reduce task. */
@InterfaceAudience.Private
@InterfaceStability.Unstable
public class ReduceTask extends Task {
static { // register a ctor
WritableFactories.setFactory
(ReduceTask.class,
new WritableFactory() {
public Writable newInstance() { return new ReduceTask(); }
});
}
private static final Logger LOG =
LoggerFactory.getLogger(ReduceTask.class.getName());
private int numMaps;
private CompressionCodec codec;
// If this is a LocalJobRunner-based job, this will
// be a mapping from map task attempts to their output files.
// This will be null in other cases.
private Map<TaskAttemptID, MapOutputFile> localMapFiles;
{
getProgress().setStatus("reduce");
setPhase(TaskStatus.Phase.SHUFFLE); // phase to start with
}
private Progress copyPhase;
private Progress sortPhase;
private Progress reducePhase;
private Counters.Counter shuffledMapsCounter =
getCounters().findCounter(TaskCounter.SHUFFLED_MAPS);
private Counters.Counter reduceShuffleBytes =
getCounters().findCounter(TaskCounter.REDUCE_SHUFFLE_BYTES);
private Counters.Counter reduceInputKeyCounter =
getCounters().findCounter(TaskCounter.REDUCE_INPUT_GROUPS);
private Counters.Counter reduceInputValueCounter =
getCounters().findCounter(TaskCounter.REDUCE_INPUT_RECORDS);
private Counters.Counter reduceOutputCounter =
getCounters().findCounter(TaskCounter.REDUCE_OUTPUT_RECORDS);
private Counters.Counter reduceCombineInputCounter =
getCounters().findCounter(TaskCounter.COMBINE_INPUT_RECORDS);
private Counters.Counter reduceCombineOutputCounter =
getCounters().findCounter(TaskCounter.COMBINE_OUTPUT_RECORDS);
private Counters.Counter fileOutputByteCounter =
getCounters().findCounter(FileOutputFormatCounter.BYTES_WRITTEN);
// A custom comparator for map output files. Here the ordering is determined
// by the file's size and path. In case of files with same size and different
// file paths, the first parameter is considered smaller than the second one.
// In case of files with same size and path are considered equal.
private Comparator<FileStatus> mapOutputFileComparator =
new Comparator<FileStatus>() {
public int compare(FileStatus a, FileStatus b) {
if (a.getLen() < b.getLen())
return -1;
else if (a.getLen() == b.getLen())
if (a.getPath().toString().equals(b.getPath().toString()))
return 0;
else
return -1;
else
return 1;
}
};
// A sorted set for keeping a set of map output files on disk
private final SortedSet<FileStatus> mapOutputFilesOnDisk =
new TreeSet<FileStatus>(mapOutputFileComparator);
public ReduceTask() {
super();
}
public ReduceTask(String jobFile, TaskAttemptID taskId,
int partition, int numMaps, int numSlotsRequired) {
super(jobFile, taskId, partition, numSlotsRequired);
this.numMaps = numMaps;
}
/**
* Register the set of mapper outputs created by a LocalJobRunner-based
* job with this ReduceTask so it knows where to fetch from.
*
* This should not be called in normal (networked) execution.
*/
public void setLocalMapFiles(Map<TaskAttemptID, MapOutputFile> mapFiles) {
this.localMapFiles = mapFiles;
}
private CompressionCodec initCodec() {
// check if map-outputs are to be compressed
if (conf.getCompressMapOutput()) {
Class<? extends CompressionCodec> codecClass =
conf.getMapOutputCompressorClass(DefaultCodec.class);
return ReflectionUtils.newInstance(codecClass, conf);
}
return null;
}
@Override
public boolean isMapTask() {
return false;
}
public int getNumMaps() { return numMaps; }
/**
* Localize the given JobConf to be specific for this task.
*/
@Override
public void localizeConfiguration(JobConf conf) throws IOException {
super.localizeConfiguration(conf);
conf.setNumMapTasks(numMaps);
}
@Override
public void write(DataOutput out) throws IOException {
super.write(out);
out.writeInt(numMaps); // write the number of maps
}
@Override
public void readFields(DataInput in) throws IOException {
super.readFields(in);
numMaps = in.readInt();
}
// Get the input files for the reducer (for local jobs).
private Path[] getMapFiles(FileSystem fs) throws IOException {
List<Path> fileList = new ArrayList<Path>();
for(int i = 0; i < numMaps; ++i) {
fileList.add(mapOutputFile.getInputFile(i));
}
return fileList.toArray(new Path[0]);
}
private class ReduceValuesIterator<KEY,VALUE>
extends ValuesIterator<KEY,VALUE> {
public ReduceValuesIterator (RawKeyValueIterator in,
RawComparator<KEY> comparator,
Class<KEY> keyClass,
Class<VALUE> valClass,
Configuration conf, Progressable reporter)
throws IOException {
super(in, comparator, keyClass, valClass, conf, reporter);
}
@Override
public VALUE next() {
reduceInputValueCounter.increment(1);
return moveToNext();
}
protected VALUE moveToNext() {
return super.next();
}
public void informReduceProgress() {
reducePhase.set(super.in.getProgress().getProgress()); // update progress
reporter.progress();
}
}
private class SkippingReduceValuesIterator<KEY,VALUE>
extends ReduceValuesIterator<KEY,VALUE> {
private SkipRangeIterator skipIt;
private TaskUmbilicalProtocol umbilical;
private Counters.Counter skipGroupCounter;
private Counters.Counter skipRecCounter;
private long grpIndex = -1;
private Class<KEY> keyClass;
private Class<VALUE> valClass;
private SequenceFile.Writer skipWriter;
private boolean toWriteSkipRecs;
private boolean hasNext;
private TaskReporter reporter;
public SkippingReduceValuesIterator(RawKeyValueIterator in,
RawComparator<KEY> comparator, Class<KEY> keyClass,
Class<VALUE> valClass, Configuration conf, TaskReporter reporter,
TaskUmbilicalProtocol umbilical) throws IOException {
super(in, comparator, keyClass, valClass, conf, reporter);
this.umbilical = umbilical;
this.skipGroupCounter =
reporter.getCounter(TaskCounter.REDUCE_SKIPPED_GROUPS);
this.skipRecCounter =
reporter.getCounter(TaskCounter.REDUCE_SKIPPED_RECORDS);
this.toWriteSkipRecs = toWriteSkipRecs() &&
SkipBadRecords.getSkipOutputPath(conf)!=null;
this.keyClass = keyClass;
this.valClass = valClass;
this.reporter = reporter;
skipIt = getSkipRanges().skipRangeIterator();
mayBeSkip();
}
public void nextKey() throws IOException {
super.nextKey();
mayBeSkip();
}
public boolean more() {
return super.more() && hasNext;
}
private void mayBeSkip() throws IOException {
hasNext = skipIt.hasNext();
if(!hasNext) {
LOG.warn("Further groups got skipped.");
return;
}
grpIndex++;
long nextGrpIndex = skipIt.next();
long skip = 0;
long skipRec = 0;
while(grpIndex<nextGrpIndex && super.more()) {
while (hasNext()) {
VALUE value = moveToNext();
if(toWriteSkipRecs) {
writeSkippedRec(getKey(), value);
}
skipRec++;
}
super.nextKey();
grpIndex++;
skip++;
}
//close the skip writer once all the ranges are skipped
if(skip>0 && skipIt.skippedAllRanges() && skipWriter!=null) {
skipWriter.close();
}
skipGroupCounter.increment(skip);
skipRecCounter.increment(skipRec);
reportNextRecordRange(umbilical, grpIndex);
}
@SuppressWarnings("unchecked")
private void writeSkippedRec(KEY key, VALUE value) throws IOException{
if(skipWriter==null) {
Path skipDir = SkipBadRecords.getSkipOutputPath(conf);
Path skipFile = new Path(skipDir, getTaskID().toString());
skipWriter = SequenceFile.createWriter(
skipFile.getFileSystem(conf), conf, skipFile,
keyClass, valClass,
CompressionType.BLOCK, reporter);
}
skipWriter.append(key, value);
}
}
@Override
@SuppressWarnings("unchecked")
public void run(JobConf job, final TaskUmbilicalProtocol umbilical)
throws IOException, InterruptedException, ClassNotFoundException {
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
if (isMapOrReduce()) {
copyPhase = getProgress().addPhase("copy");
sortPhase = getProgress().addPhase("sort");
reducePhase = getProgress().addPhase("reduce");
}
// start thread that will handle communication with parent
TaskReporter reporter = startReporter(umbilical);
boolean useNewApi = job.getUseNewReducer();
initialize(job, getJobID(), reporter, useNewApi);
// check if it is a cleanupJobTask
if (jobCleanup) {
runJobCleanupTask(umbilical, reporter);
return;
}
if (jobSetup) {
runJobSetupTask(umbilical, reporter);
return;
}
if (taskCleanup) {
runTaskCleanupTask(umbilical, reporter);
return;
}
// Initialize the codec
codec = initCodec();
RawKeyValueIterator rIter = null;
ShuffleConsumerPlugin shuffleConsumerPlugin = null;
Class combinerClass = conf.getCombinerClass();
CombineOutputCollector combineCollector =
(null != combinerClass) ?
new CombineOutputCollector(reduceCombineOutputCounter, reporter, conf) : null;
Class<? extends ShuffleConsumerPlugin> clazz =
job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);
shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);
ShuffleConsumerPlugin.Context shuffleContext =
new ShuffleConsumerPlugin.Context(getTaskID(), job, FileSystem.getLocal(job), umbilical,
super.lDirAlloc, reporter, codec,
combinerClass, combineCollector,
spilledRecordsCounter, reduceCombineInputCounter,
shuffledMapsCounter,
reduceShuffleBytes, failedShuffleCounter,
mergedMapOutputsCounter,
taskStatus, copyPhase, sortPhase, this,
mapOutputFile, localMapFiles);
shuffleConsumerPlugin.init(shuffleContext);
rIter = shuffleConsumerPlugin.run();
// free up the data structures
mapOutputFilesOnDisk.clear();
sortPhase.complete(); // sort is complete
setPhase(TaskStatus.Phase.REDUCE);
statusUpdate(umbilical);
Class keyClass = job.getMapOutputKeyClass();
Class valueClass = job.getMapOutputValueClass();
RawComparator comparator = job.getOutputValueGroupingComparator();
if (useNewApi) {
runNewReducer(job, umbilical, reporter, rIter, comparator,
keyClass, valueClass);
} else {
runOldReducer(job, umbilical, reporter, rIter, comparator,
keyClass, valueClass);
}
shuffleConsumerPlugin.close();
done(umbilical, reporter);
}
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runOldReducer(JobConf job,
TaskUmbilicalProtocol umbilical,
final TaskReporter reporter,
RawKeyValueIterator rIter,
RawComparator<INKEY> comparator,
Class<INKEY> keyClass,
Class<INVALUE> valueClass) throws IOException {
Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer =
ReflectionUtils.newInstance(job.getReducerClass(), job);
// make output collector
String finalName = getOutputName(getPartition());
RecordWriter<OUTKEY, OUTVALUE> out = new OldTrackingRecordWriter<OUTKEY, OUTVALUE>(
this, job, reporter, finalName);
final RecordWriter<OUTKEY, OUTVALUE> finalOut = out;
OutputCollector<OUTKEY,OUTVALUE> collector =
new OutputCollector<OUTKEY,OUTVALUE>() {
public void collect(OUTKEY key, OUTVALUE value)
throws IOException {
finalOut.write(key, value);
// indicate that progress update needs to be sent
reporter.progress();
}
};
// apply reduce function
try {
//increment processed counter only if skipping feature is enabled
boolean incrProcCount = SkipBadRecords.getReducerMaxSkipGroups(job)>0 &&
SkipBadRecords.getAutoIncrReducerProcCount(job);
ReduceValuesIterator<INKEY,INVALUE> values = isSkipping() ?
new SkippingReduceValuesIterator<INKEY,INVALUE>(rIter,
comparator, keyClass, valueClass,
job, reporter, umbilical) :
new ReduceValuesIterator<INKEY,INVALUE>(rIter,
comparator, keyClass, valueClass,
job, reporter);
values.informReduceProgress();
while (values.more()) {
reduceInputKeyCounter.increment(1);
reducer.reduce(values.getKey(), values, collector, reporter);
if(incrProcCount) {
reporter.incrCounter(SkipBadRecords.COUNTER_GROUP,
SkipBadRecords.COUNTER_REDUCE_PROCESSED_GROUPS, 1);
}
values.nextKey();
values.informReduceProgress();
}
reducer.close();
reducer = null;
out.close(reporter);
out = null;
} finally {
IOUtils.cleanupWithLogger(LOG, reducer);
closeQuietly(out, reporter);
}
}
static class OldTrackingRecordWriter<K, V> implements RecordWriter<K, V> {
private final RecordWriter<K, V> real;
private final org.apache.hadoop.mapred.Counters.Counter reduceOutputCounter;
private final org.apache.hadoop.mapred.Counters.Counter fileOutputByteCounter;
private final List<Statistics> fsStats;
@SuppressWarnings({ "deprecation", "unchecked" })
public OldTrackingRecordWriter(ReduceTask reduce, JobConf job,
TaskReporter reporter, String finalName) throws IOException {
this.reduceOutputCounter = reduce.reduceOutputCounter;
this.fileOutputByteCounter = reduce.fileOutputByteCounter;
List<Statistics> matchedStats = null;
if (job.getOutputFormat() instanceof FileOutputFormat) {
matchedStats = getFsStatistics(FileOutputFormat.getOutputPath(job), job);
}
fsStats = matchedStats;
FileSystem fs = FileSystem.get(job);
long bytesOutPrev = getOutputBytes(fsStats);
this.real = job.getOutputFormat().getRecordWriter(fs, job, finalName,
reporter);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
}
@Override
public void write(K key, V value) throws IOException {
long bytesOutPrev = getOutputBytes(fsStats);
real.write(key, value);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
reduceOutputCounter.increment(1);
}
@Override
public void close(Reporter reporter) throws IOException {
long bytesOutPrev = getOutputBytes(fsStats);
real.close(reporter);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
}
private long getOutputBytes(List<Statistics> stats) {
if (stats == null) return 0;
long bytesWritten = 0;
for (Statistics stat: stats) {
bytesWritten = bytesWritten + stat.getBytesWritten();
}
return bytesWritten;
}
}
static class NewTrackingRecordWriter<K,V>
extends org.apache.hadoop.mapreduce.RecordWriter<K,V> {
private final org.apache.hadoop.mapreduce.RecordWriter<K,V> real;
private final org.apache.hadoop.mapreduce.Counter outputRecordCounter;
private final org.apache.hadoop.mapreduce.Counter fileOutputByteCounter;
private final List<Statistics> fsStats;
@SuppressWarnings("unchecked")
NewTrackingRecordWriter(ReduceTask reduce,
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext)
throws InterruptedException, IOException {
this.outputRecordCounter = reduce.reduceOutputCounter;
this.fileOutputByteCounter = reduce.fileOutputByteCounter;
List<Statistics> matchedStats = null;
if (reduce.outputFormat instanceof org.apache.hadoop.mapreduce.lib.output.FileOutputFormat) {
matchedStats = getFsStatistics(org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
.getOutputPath(taskContext), taskContext.getConfiguration());
}
fsStats = matchedStats;
long bytesOutPrev = getOutputBytes(fsStats);
this.real = (org.apache.hadoop.mapreduce.RecordWriter<K, V>) reduce.outputFormat
.getRecordWriter(taskContext);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
}
@Override
public void close(TaskAttemptContext context) throws IOException,
InterruptedException {
long bytesOutPrev = getOutputBytes(fsStats);
real.close(context);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
}
@Override
public void write(K key, V value) throws IOException, InterruptedException {
long bytesOutPrev = getOutputBytes(fsStats);
real.write(key,value);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
outputRecordCounter.increment(1);
}
private long getOutputBytes(List<Statistics> stats) {
if (stats == null) return 0;
long bytesWritten = 0;
for (Statistics stat: stats) {
bytesWritten = bytesWritten + stat.getBytesWritten();
}
return bytesWritten;
}
}
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewReducer(JobConf job,
final TaskUmbilicalProtocol umbilical,
final TaskReporter reporter,
RawKeyValueIterator rIter,
RawComparator<INKEY> comparator,
Class<INKEY> keyClass,
Class<INVALUE> valueClass
) throws IOException,InterruptedException,
ClassNotFoundException {
// wrap value iterator to report progress.
final RawKeyValueIterator rawIter = rIter;
rIter = new RawKeyValueIterator() {
public void close() throws IOException {
rawIter.close();
}
public DataInputBuffer getKey() throws IOException {
return rawIter.getKey();
}
public Progress getProgress() {
return rawIter.getProgress();
}
public DataInputBuffer getValue() throws IOException {
return rawIter.getValue();
}
public boolean next() throws IOException {
boolean ret = rawIter.next();
reporter.setProgress(rawIter.getProgress().getProgress());
return ret;
}
};
// make a task context so we can get the classes
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job,
getTaskID(), reporter);
// make a reducer
org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer =
(org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>)
ReflectionUtils.newInstance(taskContext.getReducerClass(), job);
org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> trackedRW =
new NewTrackingRecordWriter<OUTKEY, OUTVALUE>(this, taskContext);
job.setBoolean("mapred.skip.on", isSkipping());
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
org.apache.hadoop.mapreduce.Reducer.Context
reducerContext = createReduceContext(reducer, job, getTaskID(),
rIter, reduceInputKeyCounter,
reduceInputValueCounter,
trackedRW,
committer,
reporter, comparator, keyClass,
valueClass);
try {
reducer.run(reducerContext);
} finally {
trackedRW.close(reducerContext);
}
}
private <OUTKEY, OUTVALUE>
void closeQuietly(RecordWriter<OUTKEY, OUTVALUE> c, Reporter r) {
if (c != null) {
try {
c.close(r);
} catch (Exception e) {
LOG.info("Exception in closing " + c, e);
}
}
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦