harmony 鸿蒙@ohos.ai.mindSporeLite (On-device AI Framework)
@ohos.ai.mindSporeLite (On-device AI Framework)
MindSpore Lite is a lightweight and high-performance on-device AI engine that provides standard model inference and training APIs and built-in universal high-performance operator libraries. It supports Neural Network Runtime Kit for a higher inference efficiency, empowering intelligent applications in all scenarios.
This topic describes the model inference and training capabilities supported by the MindSpore Lite AI engine.
NOTE
The initial APIs of this module are supported since API version 10. Newly added APIs will be marked with a superscript to indicate their earliest API version. Unless otherwise stated, the MindSpore model is used in the sample code.
The APIs of this module can be used only in the stage model.
Modules to Import
import { mindSporeLite } from '@kit.MindSporeLiteKit';
mindSporeLite.loadModelFromFile
loadModelFromFile(model: string, callback: Callback<Model>): void
Loads the input model from the full path for model inference. This API uses an asynchronous callback to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | string | Yes | Complete path of the input model. |
callback | Callback<Model> | Yes | Callback used to return the result, which is a Model object. |
Example
let modelFile : string = '/path/to/xxx.ms';
mindSporeLite.loadModelFromFile(modelFile, (mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadModelFromFile
loadModelFromFile(model: string, context: Context, callback: Callback<Model>): void
Loads the input model from the full path for model inference. This API uses an asynchronous callback to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | string | Yes | Complete path of the input model. |
context | Context | Yes | Configuration information of the running environment. |
callback | Callback<Model> | Yes | Callback used to return the result, which is a Model object. |
Example
let context: mindSporeLite.Context = {};
context.target = ['cpu'];
let modelFile : string = '/path/to/xxx.ms';
mindSporeLite.loadModelFromFile(modelFile, context, (mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadModelFromFile
loadModelFromFile(model: string, context?: Context): Promise<Model>
Loads the input model from the full path for model inference. This API uses a promise to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | string | Yes | Complete path of the input model. |
context | Context | No | Configuration information of the running environment. By default, CpuDevice is used for initialization. |
Return value
Type | Description |
---|---|
Promise<Model> | Promise used to return the result, which is a Model object. |
Example
let modelFile = '/path/to/xxx.ms';
mindSporeLite.loadModelFromFile(modelFile).then((mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadModelFromBuffer
loadModelFromBuffer(model: ArrayBuffer, callback: Callback<Model>): void
Loads the input model from the memory for inference. This API uses an asynchronous callback to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | ArrayBuffer | Yes | Memory that contains the input model. |
callback | Callback<Model> | Yes | Callback used to return the result, which is a Model object. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((buffer: Uint8Array) => {
let modelBuffer = buffer.buffer;
mindSporeLite.loadModelFromBuffer(modelBuffer, (mindSporeLiteModel: mindSporeLite.Model) => {
let modelInputs: mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info('MS_LITE_LOG: ' + modelInputs[0].name);
})
})
mindSporeLite.loadModelFromBuffer
loadModelFromBuffer(model: ArrayBuffer, context: Context, callback: Callback<Model>): void
Loads the input model from the memory for inference. This API uses an asynchronous callback to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | ArrayBuffer | Yes | Memory that contains the input model. |
context | Context | Yes | Configuration information of the running environment. |
callback | Callback<Model> | Yes | Callback used to return the result, which is a Model object. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((buffer: Uint8Array) => {
let modelBuffer = buffer.buffer;
let context: mindSporeLite.Context = {};
context.target = ['cpu'];
mindSporeLite.loadModelFromBuffer(modelBuffer, context, (mindSporeLiteModel: mindSporeLite.Model) => {
let modelInputs: mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info('MS_LITE_LOG: ' + modelInputs[0].name);
})
})
mindSporeLite.loadModelFromBuffer
loadModelFromBuffer(model: ArrayBuffer, context?: Context): Promise<Model>
Loads the input model from the memory for inference. This API uses a promise to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | ArrayBuffer | Yes | Memory that contains the input model. |
context | Context | No | Configuration information of the running environment. By default, CpuDevice is used for initialization. |
Return value
Type | Description |
---|---|
Promise<Model> | Promise used to return the result, which is a Model object. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((buffer: Uint8Array) => {
let modelBuffer = buffer.buffer;
mindSporeLite.loadModelFromBuffer(modelBuffer).then((mindSporeLiteModel: mindSporeLite.Model) => {
let modelInputs: mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info('MS_LITE_LOG: ' + modelInputs[0].name);
})
})
mindSporeLite.loadModelFromFd
loadModelFromFd(model: number, callback: Callback<Model>): void
Loads the input model based on the specified file descriptor for inference. This API uses an asynchronous callback to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | number | Yes | File descriptor of the input model. |
callback | Callback<Model> | Yes | Callback used to return the result, which is a Model object. |
Example
import { fileIo } from '@kit.CoreFileKit';
let modelFile = '/path/to/xxx.ms';
let file = fileIo.openSync(modelFile, fileIo.OpenMode.READ_ONLY);
mindSporeLite.loadModelFromFd(file.fd, (mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadModelFromFd
loadModelFromFd(model: number, context: Context, callback: Callback<Model>): void
Loads the input model based on the specified file descriptor for inference. This API uses an asynchronous callback to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | number | Yes | File descriptor of the input model. |
context | Context | Yes | Configuration information of the running environment. |
callback | Callback<Model> | Yes | Callback used to return the result, which is a Model object. |
Example
import { fileIo } from '@kit.CoreFileKit';
let modelFile = '/path/to/xxx.ms';
let context : mindSporeLite.Context = {};
context.target = ['cpu'];
let file = fileIo.openSync(modelFile, fileIo.OpenMode.READ_ONLY);
mindSporeLite.loadModelFromFd(file.fd, context, (mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadModelFromFd
loadModelFromFd(model: number, context?: Context): Promise<Model>
Loads the input model based on the specified file descriptor for inference. This API uses a promise to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | number | Yes | File descriptor of the input model. |
context | Context | No | Configuration information of the running environment. By default, CpuDevice is used for initialization. |
Return value
Type | Description |
---|---|
Promise<Model> | Promise used to return the result, which is a Model object. |
Example
import { fileIo } from '@kit.CoreFileKit';
let modelFile = '/path/to/xxx.ms';
let file = fileIo.openSync(modelFile, fileIo.OpenMode.READ_ONLY);
mindSporeLite.loadModelFromFd(file.fd).then((mindSporeLiteModel: mindSporeLite.Model) => {
let modelInputs: mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadTrainModelFromFile12+
loadTrainModelFromFile(model: string, trainCfg?: TrainCfg, context?: Context): Promise<Model>
Loads the training model file based on the specified path. This API uses a promise to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | string | Yes | Complete path of the input model. |
trainCfg | TrainCfg | No | Model training configuration. The default value is an array of the default values of attributes in TrainCfg. |
context | Context | No | Configuration information of the running environment. By default, CpuDevice is used for initialization. |
Return value
Type | Description |
---|---|
Promise<Model> | Promise used to return the result, which is a Model object. |
Example
let modelFile = '/path/to/xxx.ms';
mindSporeLite.loadTrainModelFromFile(modelFile).then((mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
mindSporeLite.loadTrainModelFromBuffer12+
loadTrainModelFromBuffer(model: ArrayBuffer, trainCfg?: TrainCfg, context?: Context): Promise<Model>
Loads a training model from the memory buffer. This API uses a promise to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | ArrayBuffer | Yes | Memory accommodating the training model. |
trainCfg | TrainCfg | No | Model training configuration. The default value is an array of the default values of attributes in TrainCfg. |
context | Context | No | Configuration information of the running environment. By default, CpuDevice is used for initialization. |
Return value
Type | Description |
---|---|
Promise<Model> | Promise used to return the result, which is a Model object. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((buffer: Uint8Array) => {
let modelBuffer = buffer.buffer;
mindSporeLite.loadTrainModelFromBuffer(modelBuffer).then((mindSporeLiteModel: mindSporeLite.Model) => {
console.info("MSLITE trainMode: ", mindSporeLiteModel.trainMode);
})
})
mindSporeLite.loadTrainModelFromFd12+
loadTrainModelFromFd(model: number, trainCfg?: TrainCfg, context?: Context): Promise<Model>
Loads the training model file from the file descriptor. This API uses a promise to return the result.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
model | number | Yes | File descriptor of the training model. |
trainCfg | TrainCfg | No | Model training configuration. The default value is an array of the default values of attributes in TrainCfg. |
context | Context | No | Configuration information of the running environment. By default, CpuDevice is used for initialization. |
Return value
Type | Description |
---|---|
Promise<Model> | Promise used to return the result, which is a Model object. |
Example
import { fileIo } from '@kit.CoreFileKit';
let modelFile = '/path/to/xxx.ms';
let file = fileIo.openSync(modelFile, fileIo.OpenMode.READ_ONLY);
mindSporeLite.loadTrainModelFromFd(file.fd).then((mindSporeLiteModel: mindSporeLite.Model) => {
console.info("MSLITE trainMode: ", mindSporeLiteModel.trainMode);
});
mindSporeLite.getAllNNRTDeviceDescriptions12+
getAllNNRTDeviceDescriptions() : NNRTDeviceDescription[]
Obtains all device descriptions in NNRt.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
NNRTDeviceDescription[] | NNRt device description array. |
Example
let allDevices = mindSporeLite.getAllNNRTDeviceDescriptions();
if (allDevices == null) {
console.error('MS_LITE_LOG: getAllNNRTDeviceDescriptions is NULL.');
}
Context
Defines the configuration information of the running environment.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
target | string[] | No | Yes | Target backend. The value can be cpu or nnrt. The default value is cpu. |
cpu | CpuDevice | No | Yes | CPU backend device option. Set this parameter set only when target is set to cpu. The default value is an array of the default values of attributes in CpuDevice. |
nnrt | NNRTDevice | No | Yes | NNRt backend device option. Set this parameter set only when target is set to nnrt. The default value is an array of the default values of attributes in NNRTDevice. |
Example
let context: mindSporeLite.Context = {};
context.target = ['cpu','nnrt'];
CpuDevice
Defines the CPU backend device option.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
threadNum | number | No | Yes | Number of runtime threads. The default value is 2. |
threadAffinityMode | ThreadAffinityMode | No | Yes | Affinity mode for binding runtime threads to CPU cores. The default value is mindSporeLite.ThreadAffinityMode.NO_AFFINITIES. |
threadAffinityCoreList | number[] | No | Yes | List of CPU cores bound to runtime threads. Set this parameter only when threadAffinityMode is set. If threadAffinityMode is set to mindSporeLite.ThreadAffinityMode.NO_AFFINITIES, this parameter is empty. The number in the list indicates the SN of the CPU core. The default value is []. |
precisionMode | string | No | Yes | Whether to enable the Float16 inference mode. The value preferred_fp16 means to enable half-precision inference and the default value enforce_fp32 means to disable half-precision inference. Other settings are not supported. |
Float16 inference mode: a mode that uses half-precision inference. Float16 uses 16 bits to represent a number and therefore it is also called half-precision.
Example
let context: mindSporeLite.Context = {};
context.cpu = {};
context.target = ['cpu'];
context.cpu.threadNum = 2;
context.cpu.threadAffinityMode = 0;
context.cpu.precisionMode = 'preferred_fp16';
context.cpu.threadAffinityCoreList = [0, 1, 2];
ThreadAffinityMode
Specifies the affinity mode for binding runtime threads to CPU cores.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
NO_AFFINITIES | 0 | No affinities. |
BIG_CORES_FIRST | 1 | Big cores first. |
LITTLE_CORES_FIRST | 2 | Medium cores first. |
NNRTDevice
Represents an NNRt device. Neural Network Runtime (NNRt) is a bridge that connects the upper-layer AI inference framework to the bottom-layer acceleration chip to implement cross-chip inference and computing of AI models. An NNRt backend can be configured for MindSpore Lite.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
deviceID12+ | bigint | No | Yes | NNRt device ID. The default value is 0. |
performanceMode12+ | PerformanceMode | No | Yes | NNRt device performance mode. The default value is PERFORMANCE_NONE. |
priority12+ | Priority | No | Yes | NNRt inference task priority. The default value is PRIORITY_MEDIUM. |
extensions12+ | Extension[] | No | Yes | Extended NNRt device configuration. This parameter is left empty by default. |
PerformanceMode12+
Enumerates NNRt device performance modes.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
PERFORMANCE_NONE | 0 | No special settings. |
PERFORMANCE_LOW | 1 | Low power consumption. |
PERFORMANCE_MEDIUM | 2 | Power consumption and performance balancing. |
PERFORMANCE_HIGH | 3 | High performance. |
PERFORMANCE_EXTREME | 4 | Ultimate performance. |
Priority12+
Enumerates NNRt inference task priorities.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
PRIORITY_NONE | 0 | No priority preference. |
PRIORITY_LOW | 1 | Low priority. |
PRIORITY_MEDIUM | 2 | Medium priority. |
PRIORITY_HIGH | 3 | High priority. |
Extension12+
Defines the extended NNRt device configuration.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
name12+ | string | No | No | Configuration name. |
value12+ | ArrayBuffer | No | No | Memory accommodating the extended configuration. |
NNRTDeviceDescription12+
Defines NNRt device information, including the device ID and device name.
System capability: SystemCapability.AI.MindSporeLite
deviceID
deviceID() : bigint
Obtains the NNRt device ID.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
bigint | NNRt device ID. |
Example
let allDevices = mindSporeLite.getAllNNRTDeviceDescriptions();
if (allDevices == null) {
console.error('getAllNNRTDeviceDescriptions is NULL.');
}
let context: mindSporeLite.Context = {};
context.target = ["nnrt"];
context.nnrt = {};
for (let i: number = 0; i < allDevices.length; i++) {
console.info(allDevices[i].deviceID().toString());
}
deviceType
deviceType() : NNRTDeviceType
Obtains the device model.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
NNRTDeviceType | NNRt device type. |
Example
let allDevices = mindSporeLite.getAllNNRTDeviceDescriptions();
if (allDevices == null) {
console.error('getAllNNRTDeviceDescriptions is NULL.');
}
let context: mindSporeLite.Context = {};
context.target = ["nnrt"];
context.nnrt = {};
for (let i: number = 0; i < allDevices.length; i++) {
console.info(allDevices[i].deviceType().toString());
}
deviceName
deviceName() : string
Obtains the NNRt device name.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
string | NNRt device name. |
Example
let allDevices = mindSporeLite.getAllNNRTDeviceDescriptions();
if (allDevices == null) {
console.error('getAllNNRTDeviceDescriptions is NULL.');
}
let context: mindSporeLite.Context = {};
context.target = ["nnrt"];
context.nnrt = {};
for (let i: number = 0; i < allDevices.length; i++) {
console.info(allDevices[i].deviceName().toString());
}
NNRTDeviceType12+
Enumerates NNRt device types.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
NNRTDEVICE_OTHERS | 0 | Others (any device type except the following three types). |
NNRTDEVICE_CPU | 1 | CPU. |
NNRTDEVICE_GPU | 2 | GPU. |
NNRTDEVICE_ACCELERATOR | 3 | Specific acceleration device. |
TrainCfg12+
Defines the configuration for on-device training.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
lossName12+ | string[] | No | Yes | List of loss functions. The default value is [“loss_fct”, “_loss_fn”, “SigmoidCrossEntropy”]. |
optimizationLevel12+ | OptimizationLevel | No | Yes | Network optimization level for on-device training. The default value is O0. |
Example
let cfg: mindSporeLite.TrainCfg = {};
cfg.lossName = ["loss_fct", "_loss_fn", "SigmoidCrossEntropy"];
cfg.optimizationLevel = mindSporeLite.OptimizationLevel.O0;
OptimizationLevel12+
Enumerates network optimization levels for on-device training.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
O0 | 0 | No optimization level. |
O2 | 2 | Converts the precision type of the network to float16 and keeps the precision type of the batch normalization layer and loss function as float32. |
O3 | 3 | Converts the precision type of the network (including the batch normalization layer) to float16. |
AUTO | 4 | Selects an optimization level based on the device. |
QuantizationType12+
Enumerates quantization types.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
NO_QUANT | 0 | No quantification. |
WEIGHT_QUANT | 1 | Weight quantization. |
FULL_QUANT | 2 | Full quantization. |
Model
Represents a Model instance, with properties and APIs defined.
In the following sample code, you first need to use loadModelFromFile(), loadModelFromBuffer(), or loadModelFromFd() to obtain a Model instance before calling related APIs.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
learningRate12+ | number | No | Yes | Learning rate of a training model. The default value is read from the loaded model. |
trainMode12+ | boolean | No | Yes | Training mode. The value true indicates the training mode, and the value false indicates the non-training mode. The default value is true for a training model and false for an inference model. |
getInputs
getInputs(): MSTensor[]
Obtains the model input for inference.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
MSTensor[] | MSTensor object. |
Example
let modelFile = '/path/to/xxx.ms';
mindSporeLite.loadModelFromFile(modelFile).then((mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
})
predict
predict(inputs: MSTensor[], callback: Callback<MSTensor[]>): void
Executes the inference model. This API uses an asynchronous callback to return the result. Ensure that the model object is not reclaimed when being invoked.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
inputs | MSTensor[] | Yes | List of input models. |
callback | Callback<MSTensor[]> | Yes | Callback used to return the result, which is a list of MSTensor objects. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let inputName = 'input_data.bin';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(inputName).then(async (buffer : Uint8Array) => {
let inputBuffer = buffer.buffer;
let modelFile : string = '/path/to/xxx.ms';
let mindSporeLiteModel : mindSporeLite.Model = await mindSporeLite.loadModelFromFile(modelFile);
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
modelInputs[0].setData(inputBuffer);
mindSporeLiteModel.predict(modelInputs, (mindSporeLiteTensor : mindSporeLite.MSTensor[]) => {
let output = new Float32Array(mindSporeLiteTensor[0].getData());
for (let i = 0; i < output.length; i++) {
console.info('MS_LITE_LOG: ' + output[i].toString());
}
})
})
predict
predict(inputs: MSTensor[]): Promise<MSTensor[]>
Executes model inference. This API uses a promise to return the result. Ensure that the model object is not reclaimed when being invoked.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
inputs | MSTensor[] | Yes | List of input models. |
Return value
Type | Description |
---|---|
Promise<MSTensor[]> | Promise used to return the result, List of MSTensor objects. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let inputName = 'input_data.bin';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(inputName).then(async (buffer : Uint8Array) => {
let inputBuffer = buffer.buffer;
let modelFile = '/path/to/xxx.ms';
let mindSporeLiteModel : mindSporeLite.Model = await mindSporeLite.loadModelFromFile(modelFile);
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
modelInputs[0].setData(inputBuffer);
mindSporeLiteModel.predict(modelInputs).then((mindSporeLiteTensor : mindSporeLite.MSTensor[]) => {
let output = new Float32Array(mindSporeLiteTensor[0].getData());
for (let i = 0; i < output.length; i++) {
console.info(output[i].toString());
}
})
})
resize
resize(inputs: MSTensor[], dims: Array<Array<number>>): boolean
Resets the tensor size.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
inputs | MSTensor[] | Yes | List of input models. |
dims | Array<Array<number>> | Yes | Target tensor size. |
Return value
Type | Description |
---|---|
boolean | Result indicating whether the setting is successful. The value true indicates that the tensor size is successfully reset, and the value false indicates the opposite. |
Example
let modelFile = '/path/to/xxx.ms';
mindSporeLite.loadModelFromFile(modelFile).then((mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
let new_dim = new Array([1,32,32,1]);
mindSporeLiteModel.resize(modelInputs, new_dim);
})
runStep12+
runStep(inputs: MSTensor[]): boolean
Defines a single-step training model. This API is used only for on-device training.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
inputs | MSTensor[] | Yes | List of input models. |
Return value
Type | Description |
---|---|
boolean | Result indicating whether the operation is successful. The value true indicates that the operation is successful, and the value false indicates the opposite. |
Example
let modelFile = '/path/to/xxx.ms';
mindSporeLite.loadTrainModelFromFile(modelFile).then((mindSporeLiteModel: mindSporeLite.Model) => {
mindSporeLiteModel.trainMode = true;
const modelInputs = mindSporeLiteModel.getInputs();
let ret = mindSporeLiteModel.runStep(modelInputs);
if (ret == false) {
console.error('MS_LITE_LOG: runStep failed.')
}
})
getWeights12+
getWeights(): MSTensor[]
Obtains all weight tensors of a model. This API is used only for on-device training.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
MSTensor[] | Weight tensor of the training model. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((modelBuffer : Uint8Array) => {
mindSporeLite.loadTrainModelFromBuffer(modelBuffer.buffer.slice(0)).then((mindSporeLiteModel: mindSporeLite.Model) => {
mindSporeLiteModel.trainMode = true;
const weights = mindSporeLiteModel.getWeights();
for (let i = 0; i < weights.length; i++) {
let printStr = weights[i].name + ", ";
printStr += weights[i].shape + ", ";
printStr += weights[i].dtype + ", ";
printStr += weights[i].dataSize + ", ";
printStr += weights[i].getData();
console.info("MS_LITE weights: ", printStr);
}
})
})
updateWeights12+
updateWeights(weights: MSTensor[]): boolean
Weight of the updated model, which is used only for on-device training.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
weights | MSTensor[] | Yes | List of weight tensors. |
Return value
Type | Description |
---|---|
boolean | Result indicating whether the operation is successful. The value true indicates that the operation is successful, and the value false indicates the opposite. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((modelBuffer : Uint8Array) => {
mindSporeLite.loadTrainModelFromBuffer(modelBuffer.buffer.slice(0)).then((mindSporeLiteModel: mindSporeLite.Model) => {
mindSporeLiteModel.trainMode = true;
const weights = mindSporeLiteModel.getWeights();
let ret = mindSporeLiteModel.updateWeights(weights);
if (ret == false) {
console.error('MS_LITE_LOG: updateWeights failed.')
}
})
})
setupVirtualBatch12+
setupVirtualBatch(virtualBatchMultiplier: number, lr: number, momentum: number): boolean
Sets the virtual batch for training. This API is used only for on-device training.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
virtualBatchMultiplier | number | Yes | Virtual batch multiplier. If the value is less than 1, the virtual batch is disabled. |
lr | number | Yes | Learning rate. |
momentum | number | Yes | Momentum. |
Return value
Type | Description |
---|---|
boolean | Result indicating whether the operation is successful. The value true indicates that the operation is successful, and the value false indicates the opposite. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let modelFile = 'xxx.ms';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(modelFile).then((modelBuffer : Uint8Array) => {
mindSporeLite.loadTrainModelFromBuffer(modelBuffer.buffer.slice(0)).then((mindSporeLiteModel: mindSporeLite.Model) => {
mindSporeLiteModel.trainMode = true;
let ret = mindSporeLiteModel.setupVirtualBatch(2,-1,-1);
if (ret == false) {
console.error('MS_LITE setupVirtualBatch failed.')
}
})
})
exportModel12+
exportModel(modelFile: string, quantizationType?: QuantizationType, exportInferenceOnly?: boolean, outputTensorName?: string[]): boolean
Exports a training model. This API is used only for on-device training.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
modelFile | string | Yes | File path of the training models. |
quantizationType | QuantizationType | No | Quantization type. The default value is NO_QUANT. |
exportInferenceOnly | boolean | No | Whether to export inference models only. The value true means to export only inference models, and the value false means to export both training and inference models. The default value is true. |
outputTensorName | string[] | No | Name of the output tensor of the exported training model. The default value is an empty string array, which indicates full export. |
Return value
Type | Description |
---|---|
boolean | Result indicating whether the operation is successful. The value true indicates that the operation is successful, and the value false indicates the opposite. |
Example
let modelFile = '/path/to/xxx.ms';
let newPath = '/newpath/to';
mindSporeLite.loadTrainModelFromFile(modelFile).then((mindSporeLiteModel: mindSporeLite.Model) => {
mindSporeLiteModel.trainMode = true;
let ret = mindSporeLiteModel.exportModel(newPath + "/new_model.ms", mindSporeLite.QuantizationType.NO_QUANT, true);
if (ret == false) {
console.error('MS_LITE exportModel failed.')
}
})
exportWeightsCollaborateWithMicro12+
exportWeightsCollaborateWithMicro(weightFile: string, isInference?: boolean, enableFp16?: boolean, changeableWeightsName?: string[]): boolean
Exports model weights for micro inference. This API is available only for on-device training.
Micro inference is a ultra-lightweight micro AI deployment solution provided by MindSpore Lite to deploy hardware backends for Micro Controller Units (MCUs). This solution directly converts models into lightweight code in offline mode, eliminating the need for online model parsing and graph compilation.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
weightFile | string | Yes | Path of the weight file. |
isInference | boolean | No | Whether to export weights from the inference model. The value true means to export weights from the inference model. The default value is true. Currently, only true is supported. |
enableFp16 | boolean | No | Whether to store floating-point weights in float16 format. The value true means to store floating-point weights in float16 format, and the value false means the opposite. The default value is false. |
changeableWeightsName | string[] | No | Name of the variable weight. The default value is an empty string array. |
Return value
Type | Description |
---|---|
boolean | Result indicating whether the operation is successful. The value true indicates that the operation is successful, and the value false indicates the opposite. |
Example
let modelFile = '/path/to/xxx.ms';
let microWeight = '/path/to/xxx.bin';
mindSporeLite.loadTrainModelFromFile(modelFile).then((mindSporeLiteModel: mindSporeLite.Model) => {
let ret = mindSporeLiteModel.exportWeightsCollaborateWithMicro(microWeight);
if (ret == false) {
console.error('MSLITE exportWeightsCollaborateWithMicro failed.')
}
})
MSTensor
Represents an MSTensor instance, with properties and APIs defined. It is a special data structure similar to arrays and matrices. It is the basic data structure used in MindSpore Lite network operations.
In the following sample code, you first need to use getInputs() to obtain an MSTensor instance before calling related APIs.
Attributes
System capability: SystemCapability.AI.MindSporeLite
Name | Type | Read Only | Optional | Description |
---|---|---|---|---|
name | string | No | No | Tensor name. |
shape | number[] | No | No | Tensor dimension array. |
elementNum | number | No | No | Length of the tensor dimension array. |
dataSize | number | No | No | Length of tensor data. |
dtype | DataType | No | No | Tensor data type. |
format | Format | No | No | Tensor data format. |
Example
let modelFile = '/path/to/xxx.ms';
mindSporeLite.loadModelFromFile(modelFile).then((mindSporeLiteModel : mindSporeLite.Model) => {
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
console.info(modelInputs[0].name);
console.info(modelInputs[0].shape.toString());
console.info(modelInputs[0].elementNum.toString());
console.info(modelInputs[0].dtype.toString());
console.info(modelInputs[0].format.toString());
console.info(modelInputs[0].dataSize.toString());
})
getData
getData(): ArrayBuffer
Obtains tensor data.
System capability: SystemCapability.AI.MindSporeLite
Return value
Type | Description |
---|---|
ArrayBuffer | Pointer to the tensor data. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let inputName = 'input_data.bin';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(inputName).then(async (buffer : Uint8Array) => {
let inputBuffer = buffer.buffer;
let modelFile = '/path/to/xxx.ms';
let mindSporeLiteModel : mindSporeLite.Model = await mindSporeLite.loadModelFromFile(modelFile);
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
modelInputs[0].setData(inputBuffer);
mindSporeLiteModel.predict(modelInputs).then((mindSporeLiteTensor : mindSporeLite.MSTensor[]) => {
let output = new Float32Array(mindSporeLiteTensor[0].getData());
for (let i = 0; i < output.length; i++) {
console.info(output[i].toString());
}
})
})
setData
setData(inputArray: ArrayBuffer): void
Sets the tensor data.
System capability: SystemCapability.AI.MindSporeLite
Parameters
Name | Type | Mandatory | Description |
---|---|---|---|
inputArray | ArrayBuffer | Yes | Input data buffer of the tensor. |
Example
import { mindSporeLite } from '@kit.MindSporeLiteKit';
import { common } from '@kit.AbilityKit';
import { UIContext } from '@kit.ArkUI';
let inputName = 'input_data.bin';
let globalContext = new UIContext().getHostContext() as common.UIAbilityContext;
globalContext.getApplicationContext().resourceManager.getRawFileContent(inputName).then(async (buffer : Uint8Array) => {
let inputBuffer = buffer.buffer;
let modelFile = '/path/to/xxx.ms';
let mindSporeLiteModel : mindSporeLite.Model = await mindSporeLite.loadModelFromFile(modelFile);
let modelInputs : mindSporeLite.MSTensor[] = mindSporeLiteModel.getInputs();
modelInputs[0].setData(inputBuffer);
})
DataType
Tensor data type.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
TYPE_UNKNOWN | 0 | Unknown type. |
NUMBER_TYPE_INT8 | 32 | Int8 type. |
NUMBER_TYPE_INT16 | 33 | Int16 type. |
NUMBER_TYPE_INT32 | 34 | Int32 type. |
NUMBER_TYPE_INT64 | 35 | Int64 type. |
NUMBER_TYPE_UINT8 | 37 | UInt8 type. |
NUMBER_TYPE_UINT16 | 38 | UInt16 type. |
NUMBER_TYPE_UINT32 | 39 | UInt32 type. |
NUMBER_TYPE_UINT64 | 40 | UInt64 type. |
NUMBER_TYPE_FLOAT16 | 42 | Float16 type. |
NUMBER_TYPE_FLOAT32 | 43 | Float32 type. |
NUMBER_TYPE_FLOAT64 | 44 | Float64 type. |
Format
Enumerates tensor data formats.
System capability: SystemCapability.AI.MindSporeLite
Name | Value | Description |
---|---|---|
DEFAULT_FORMAT | -1 | Unknown data format. |
NCHW | 0 | NCHW format. |
NHWC | 1 | NHWC format. |
NHWC4 | 2 | NHWC4 format. |
HWKC | 3 | HWKC format. |
HWCK | 4 | HWCK format. |
KCHW | 5 | KCHW format. |
你可能感兴趣的鸿蒙文章
- 所属分类: 后端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦