harmony 鸿蒙使用MindSpore Lite实现语音识别(C/C++)
使用MindSpore Lite实现语音识别(C/C++)
场景说明
开发者可以使用MindSpore,在UI代码中集成MindSpore Lite能力,快速部署AI算法,进行AI模型推理,实现语音识别的应用。
语音识别可以将一段音频信息转换为文本,在智能语音助手、语音输入、语音搜索等领域有广泛的应用。
基本概念
- N-API:用于构建ArkTS本地化组件的一套接口。可利用N-API,将C/C++开发的库封装成ArkTS模块。
开发流程
- 选择语音识别模型。
- 在端侧使用MindSpore Lite推理模型,实现对语音文件的语音识别。
环境准备
安装DevEco Studio,要求版本 >= 5.0.2,并更新SDK到API 14或以上。
开发步骤
本文以对语音识别模型进行推理为例,提供使用MindSpore Lite实现语音识别应用的开发指导。
选择模型
本示例程序中使用的语音识别模型文件为tiny-encoder.ms、tiny-decoder-main.ms、tiny-decoder-loop.ms,放置在entry/src/main/resources/rawfile工程目录下。
编写代码
播放音频
- 调用@ohos.multimedia.media、@ohos.multimedia.audio,实现播放音频的功能。
// player.ets
import { media } from '@kit.MediaKit';
import { common } from '@kit.AbilityKit';
import { BusinessError } from '@kit.BasicServicesKit';
import { audio } from '@kit.AudioKit';
import { UIContext } from '@kit.ArkUI';
export default class AVPlayerDemo {
private isSeek: boolean = false; // 用于区分模式是否支持seek操作。
// 注册avplayer回调函数。
setAVPlayerCallback(avPlayer: media.AVPlayer) {
// seek操作结果回调函数。
avPlayer.on('seekDone', (seekDoneTime: number) => {
console.info(`MS_LITE_LOG: AVPlayer seek succeeded, seek time is ${seekDoneTime}`);
});
// error回调监听函数,当avPlayer在操作过程中出现错误时调用reset接口触发重置流程。
avPlayer.on('error', (err: BusinessError) => {
console.error(`MS_LITE_LOG: Invoke avPlayer failed, code is ${err.code}, message is ${err.message}`);
avPlayer.reset(); // 调用reset重置资源,触发idle状态。
});
// 状态机变化回调函数。
avPlayer.on('stateChange', async (state: string, reason: media.StateChangeReason) => {
switch (state) {
case 'idle': // 成功调用reset接口后触发该状态机上报。
console.info('MS_LITE_LOG: AVPlayer state idle called.');
avPlayer.release(); // 调用release接口销毁实例对象。
break;
case 'initialized': // avplayer 设置播放源后触发该状态上报。
console.info('MS_LITE_LOG: AVPlayer state initialized called.');
avPlayer.audioRendererInfo = {
usage: audio.StreamUsage.STREAM_USAGE_MUSIC, // 音频流使用类型:音乐。根据业务场景配置。
rendererFlags: 0 // 音频渲染器标志。
};
avPlayer.prepare();
break;
case 'prepared': // prepare调用成功后上报该状态机。
console.info('MS_LITE_LOG: AVPlayer state prepared called.');
avPlayer.play(); // 调用播放接口开始播放。
break;
case 'playing': // play成功调用后触发该状态机上报。
console.info('MS_LITE_LOG: AVPlayer state playing called.');
if (this.isSeek) {
console.info('MS_LITE_LOG: AVPlayer start to seek.');
avPlayer.seek(0); // seek到音频末尾。
} else {
// 当播放模式不支持seek操作时继续播放到结尾。
console.info('MS_LITE_LOG: AVPlayer wait to play end.');
}
break;
case 'paused': // pause成功调用后触发该状态机上报。
console.info('MS_LITE_LOG: AVPlayer state paused called.');
setTimeout(() => {
console.info('MS_LITE_LOG: AVPlayer paused wait to play again');
avPlayer.play(); // 暂停3s后再次调用播放接口开始播放。
}, 3000);
break;
case 'completed': // 播放结束后触发该状态机上报。
console.info('MS_LITE_LOG: AVPlayer state completed called.');
avPlayer.stop(); // 调用播放结束接口。
break;
case 'stopped': // stop接口成功调用后触发该状态机上报。
console.info('MS_LITE_LOG: AVPlayer state stopped called.');
avPlayer.reset(); // 调用reset接口初始化avplayer状态。
break;
case 'released':
console.info('MS_LITE_LOG: AVPlayer state released called.');
break;
default:
console.info('MS_LITE_LOG: AVPlayer state unknown called.');
break;
}
});
}
// 使用资源管理接口获取音频文件并通过fdSrc属性进行播放。
async avPlayerFdSrcDemo() {
// 创建avPlayer实例对象。
let avPlayer: media.AVPlayer = await media.createAVPlayer();
// 创建状态机变化回调函数。
this.setAVPlayerCallback(avPlayer);
// 通过UIAbilityContext的resourceManager成员的getRawFd接口获取媒体资源播放地址。
// 返回类型为{fd,offset,length},fd为HAP包fd地址,offset为媒体资源偏移量,length为播放长度。
let context = new UIContext().getHostContext() as common.UIAbilityContext;
let fileDescriptor = await context.resourceManager.getRawFd('zh.wav');
let avFileDescriptor: media.AVFileDescriptor =
{ fd: fileDescriptor.fd, offset: fileDescriptor.offset, length: fileDescriptor.length };
this.isSeek = true; // 支持seek操作。
// 为fdSrc赋值触发initialized状态机上报。
avPlayer.fdSrc = avFileDescriptor;
}
}
识别音频
调用MindSpore,依次对3个模型进行推理,推理代码流程如下。
- 引用对应的头文件。其中三方库librosa来源是LibrosaCpp,libsamplerate来源是libsamplerate,AudioFile.h、base64.h来源是whisper.axera。
#include "AudioFile.h"
#include "base64.h"
#include "napi/native_api.h"
#include "utils.h"
#include <algorithm>
#include <cstdlib>
#include <fstream>
#include <hilog/log.h>
#include <iostream>
#include <librosa/librosa.h>
#include <mindspore/context.h>
#include <mindspore/model.h>
#include <mindspore/status.h>
#include <mindspore/tensor.h>
#include <mindspore/types.h>
#include <numeric>
#include <rawfile/raw_file_manager.h>
#include <sstream>
#include <vector>
- 读取音频文件、模型文件等,转换为buffer数据。
#define LOGI(...) ((void)OH_LOG_Print(LOG_APP, LOG_INFO, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
#define LOGD(...) ((void)OH_LOG_Print(LOG_APP, LOG_DEBUG, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
#define LOGW(...) ((void)OH_LOG_Print(LOG_APP, LOG_WARN, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
#define LOGE(...) ((void)OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_DOMAIN, "[MSLiteNapi]", __VA_ARGS__))
using BinBuffer = std::pair<void *, size_t>;
BinBuffer ReadBinFile(NativeResourceManager *nativeResourceManager, const std::string &modelName)
{
auto rawFile = OH_ResourceManager_OpenRawFile(nativeResourceManager, modelName.c_str());
if (rawFile == nullptr) {
LOGE("MS_LITE_ERR: Open model file failed");
return BinBuffer(nullptr, 0);
}
long fileSize = OH_ResourceManager_GetRawFileSize(rawFile);
if (fileSize <= 0) {
LOGE("MS_LITE_ERR: FileSize not correct");
return BinBuffer(nullptr, 0);
}
void *buffer = malloc(fileSize);
if (buffer == nullptr) {
LOGE("MS_LITE_ERR: OH_ResourceManager_ReadRawFile failed");
return BinBuffer(nullptr, 0);
}
int ret = OH_ResourceManager_ReadRawFile(rawFile, buffer, fileSize);
if (ret == 0) {
LOGE("MS_LITE_LOG: OH_ResourceManager_ReadRawFile failed");
OH_ResourceManager_CloseRawFile(rawFile);
return BinBuffer(nullptr, 0);
}
OH_ResourceManager_CloseRawFile(rawFile);
return BinBuffer(buffer, fileSize);
}
BinBuffer ReadTokens(NativeResourceManager *nativeResourceManager, const std::string &modelName) {
auto rawFile = OH_ResourceManager_OpenRawFile(nativeResourceManager, modelName.c_str());
if (rawFile == nullptr) {
LOGE("MS_LITE_ERR: Open model file failed");
}
long fileSize = OH_ResourceManager_GetRawFileSize(rawFile);
if (fileSize <= 0) {
LOGE("MS_LITE_ERR: FileSize not correct");
}
void *buffer = malloc(fileSize);
if (buffer == nullptr) {
LOGE("MS_LITE_ERR: OH_ResourceManager_ReadRawFile failed");
}
int ret = OH_ResourceManager_ReadRawFile(rawFile, buffer, fileSize);
if (ret == 0) {
LOGE("MS_LITE_LOG: OH_ResourceManager_ReadRawFile failed");
OH_ResourceManager_CloseRawFile(rawFile);
}
OH_ResourceManager_CloseRawFile(rawFile);
BinBuffer res(buffer, fileSize);
return res;
}
- 创建上下文,设置设备类型,并加载模型。
void DestroyModelBuffer(void **buffer)
{
if (buffer == nullptr) {
return;
}
free(*buffer);
*buffer = nullptr;
}
OH_AI_ModelHandle CreateMSLiteModel(BinBuffer &bin)
{
// 创建并配置上下文
auto context = OH_AI_ContextCreate();
if (context == nullptr) {
DestroyModelBuffer(&bin.first);
LOGE("MS_LITE_ERR: Create MSLite context failed.\n");
return nullptr;
}
auto cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU);
OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false);
OH_AI_ContextAddDeviceInfo(context, cpu_device_info);
// 创建模型
auto model = OH_AI_ModelCreate();
if (model == nullptr) {
DestroyModelBuffer(&bin.first);
LOGE("MS_LITE_ERR: Allocate MSLite Model failed.\n");
return nullptr;
}
// 加载与编译模型,模型的类型为OH_AI_MODELTYPE_MINDIR
auto build_ret = OH_AI_ModelBuild(model, bin.first, bin.second, OH_AI_MODELTYPE_MINDIR, context);
DestroyModelBuffer(&bin.first);
if (build_ret != OH_AI_STATUS_SUCCESS) {
OH_AI_ModelDestroy(&model);
LOGE("MS_LITE_ERR: Build MSLite model failed.\n");
return nullptr;
}
LOGI("MS_LITE_LOG: Build MSLite model success.\n");
return model;
}
- 设置模型输入数据,执行模型推理。
constexpr int K_NUM_PRINT_OF_OUT_DATA = 20;
int FillInputTensor(OH_AI_TensorHandle input, const BinBuffer &bin)
{
if (OH_AI_TensorGetDataSize(input) != bin.second) {
return OH_AI_STATUS_LITE_INPUT_PARAM_INVALID;
}
char *data = (char *)OH_AI_TensorGetMutableData(input);
memcpy(data, (const char *)bin.first, OH_AI_TensorGetDataSize(input));
return OH_AI_STATUS_SUCCESS;
}
// 执行模型推理
int RunMSLiteModel(OH_AI_ModelHandle model, std::vector<BinBuffer> inputBins)
{
// 设置模型的输入数据
auto inputs = OH_AI_ModelGetInputs(model);
for(int i = 0; i < inputBins.size(); i++)
{
auto ret = FillInputTensor(inputs.handle_list[i], inputBins[i]);
if (ret != OH_AI_STATUS_SUCCESS) {
LOGE("MS_LITE_ERR: set input %{public}d error.\n", i);
return OH_AI_STATUS_LITE_ERROR;
}
}
// 获取模型的输出张量
auto outputs = OH_AI_ModelGetOutputs(model);
// 模型推理
auto predict_ret = OH_AI_ModelPredict(model, inputs, &outputs, nullptr, nullptr);
if (predict_ret != OH_AI_STATUS_SUCCESS) {
OH_AI_ModelDestroy(&model);
LOGE("MS_LITE_ERR: MSLite Predict error.\n");
return OH_AI_STATUS_LITE_ERROR;
}
LOGD("MS_LITE_LOG: Run MSLite model Predict success.\n");
// 打印输出数据
LOGD("MS_LITE_LOG: Get model outputs:\n");
for (size_t i = 0; i < outputs.handle_num; i++) {
auto tensor = outputs.handle_list[i];
LOGD("MS_LITE_LOG: - Tensor %{public}d name is: %{public}s.\n", static_cast<int>(i),
OH_AI_TensorGetName(tensor));
LOGD("MS_LITE_LOG: - Tensor %{public}d size is: %{public}d.\n", static_cast<int>(i),
(int)OH_AI_TensorGetDataSize(tensor));
LOGD("MS_LITE_LOG: - Tensor data is:\n");
auto out_data = reinterpret_cast<const float *>(OH_AI_TensorGetData(tensor));
std::stringstream outStr;
for (int i = 0; (i < OH_AI_TensorGetElementNum(tensor)) && (i <= K_NUM_PRINT_OF_OUT_DATA); i++) {
outStr << out_data[i] << " ";
}
LOGD("MS_LITE_LOG: %{public}s", outStr.str().c_str());
}
return OH_AI_STATUS_SUCCESS;
}
- 调用以上方法,实现3个模型的推理流程。
const float NEG_INF = -std::numeric_limits<float>::infinity();
const int WHISPER_SOT = 50258;
const int WHISPER_TRANSCRIBE = 50359;
const int WHISPER_TRANSLATE = 50358;
const int WHISPER_NO_TIMESTAMPS = 50363;
const int WHISPER_EOT = 50257;
const int WHISPER_BLANK = 220;
const int WHISPER_NO_SPEECH = 50362;
const int WHISPER_N_TEXT_CTX = 448;
const int WHISPER_N_TEXT_STATE = 384;
constexpr int WHISPER_SAMPLE_RATE = 16000;
BinBuffer GetMSOutput(OH_AI_TensorHandle output) {
float *outputData = reinterpret_cast<float *>(OH_AI_TensorGetMutableData(output));
size_t size = OH_AI_TensorGetDataSize(output);
return {outputData, size};
}
void SupressTokens(BinBuffer &logits, bool is_initial) {
auto logits_data = static_cast<float *>(logits.first);
if (is_initial) {
logits_data[WHISPER_EOT] = NEG_INF;
logits_data[WHISPER_BLANK] = NEG_INF;
}
// 其他令牌的抑制
logits_data[WHISPER_NO_TIMESTAMPS] = NEG_INF;
logits_data[WHISPER_SOT] = NEG_INF;
logits_data[WHISPER_NO_SPEECH] = NEG_INF;
logits_data[WHISPER_TRANSLATE] = NEG_INF;
}
std::vector<int> LoopPredict(const OH_AI_ModelHandle model, const BinBuffer &n_layer_cross_k,
const BinBuffer &n_layer_cross_v, const BinBuffer &logits_init,
BinBuffer &out_n_layer_self_k_cache, BinBuffer &out_n_layer_self_v_cache,
const BinBuffer &data_embedding, const int loop, const int offset_init) {
BinBuffer logits{nullptr, 51865 * sizeof(float)};
logits.first = malloc(logits.second);
if (!logits.first) {
LOGE("MS_LITE_LOG: Fail to malloc!\n");
}
void *logits_init_src = static_cast<char *>(logits_init.first) + 51865 * 3 * sizeof(float);
memcpy(logits.first, logits_init_src, logits.second);
SupressTokens(logits, true);
std::vector<int> output_token;
float *logits_data = static_cast<float *>(logits.first);
int max_token_id = 0;
float max_token = logits_data[0];
for (int i = 0; i < logits.second / sizeof(float); i++) {
if (logits_data[i] > max_token) {
max_token_id = i;
max_token = logits_data[i];
}
}
int offset = offset_init;
BinBuffer slice{nullptr, 0};
slice.second = WHISPER_N_TEXT_STATE * sizeof(float);
slice.first = malloc(slice.second);
if (!slice.first) {
LOGE("MS_LITE_LOG: Fail to malloc!\n");
}
auto out_n_layer_self_k_cache_new = out_n_layer_self_k_cache;
auto out_n_layer_self_v_cache_new = out_n_layer_self_v_cache;
for (size_t i = 0; i < loop; i++) {
if (max_token_id == WHISPER_EOT) {
break;
}
output_token.push_back(max_token_id);
std::vector<float> mask(WHISPER_N_TEXT_CTX, 0.0f);
for (size_t i = 0; i < WHISPER_N_TEXT_CTX - offset - 1; ++i) {
mask[i] = NEG_INF;
}
BinBuffer tokens{&max_token_id, sizeof(int)};
void *data_embedding_src =
static_cast<char *>(data_embedding.first) + offset * WHISPER_N_TEXT_STATE * sizeof(float);
memcpy(slice.first, data_embedding_src, slice.second);
BinBuffer mask_bin(mask.data(), mask.size() * sizeof(float));
int ret = RunMSLiteModel(model, {tokens, out_n_layer_self_k_cache_new, out_n_layer_self_v_cache_new,
n_layer_cross_k, n_layer_cross_v, slice, mask_bin});
auto outputs = OH_AI_ModelGetOutputs(model);
logits = GetMSOutput(outputs.handle_list[0]);
out_n_layer_self_k_cache_new = GetMSOutput(outputs.handle_list[1]);
out_n_layer_self_v_cache_new = GetMSOutput(outputs.handle_list[2]);
offset++;
SupressTokens(logits, false);
logits_data = static_cast<float *>(logits.first);
max_token = logits_data[0];
for (int j = 0; j < logits.second / sizeof(float); j++) {
if (logits_data[j] > max_token) {
max_token_id = j;
max_token = logits_data[j];
}
}
LOGI("MS_LITE_LOG: run decoder loop %{public}d ok!\n token = %{public}d", i, max_token_id);
}
return output_token;
}
std::vector<std::string> ProcessDataLines(const BinBuffer token_txt) {
void *data_ptr = token_txt.first;
size_t data_size = token_txt.second;
std::vector<std::string> tokens;
const char *char_data = static_cast<const char *>(data_ptr);
std::stringstream ss(std::string(char_data, char_data + data_size));
std::string line;
while (std::getline(ss, line)) {
size_t space_pos = line.find(' ');
tokens.push_back(line.substr(0, space_pos));
}
return tokens;
}
static napi_value RunDemo(napi_env env, napi_callback_info info)
{
// 执行样例推理
napi_value error_ret;
napi_create_int32(env, -1, &error_ret);
size_t argc = 1;
napi_value argv[1] = {nullptr};
napi_get_cb_info(env, info, &argc, argv, nullptr, nullptr);
auto resourcesManager = OH_ResourceManager_InitNativeResourceManager(env, argv[0]);
// 数据预处理
AudioFile<float> audioFile;
std::string filePath = "zh.wav";
auto audioBin = ReadBinFile(resourcesManager, filePath);
if (audioBin.first == nullptr) {
LOGI("MS_LITE_LOG: Fail to read %{public}s!", filePath.c_str());
}
size_t dataSize = audioBin.second;
uint8_t *dataBuffer = (uint8_t *)audioBin.first;
bool ok = audioFile.loadFromMemory(std::vector<uint8_t>(dataBuffer, dataBuffer + dataSize));
if (!ok) {
LOGI("MS_LITE_LOG: Fail to read %{public}s!", filePath.c_str());
}
std::vector<float> data(audioFile.samples[0]);
ResampleAudio(data, audioFile.getSampleRate(), WHISPER_SAMPLE_RATE, 1, SRC_SINC_BEST_QUALITY);
std::vector<float> audio(data);
int padding = 480000;
int sr = 16000;
int n_fft = 480;
int n_hop = 160;
int n_mel = 80;
int fmin = 0; // 最小频率,默认值为0.0 Hz
int fmax =
sr /
2.0; // 最大频率,默认值为采样率(sr/2.0)的一半
audio.insert(audio.end(), padding, 0.0f);
std::vector<std::vector<float>> mels_T =
librosa::Feature::melspectrogram(audio, sr, n_fft, n_hop, "hann", true, "reflect", 2.f, n_mel, fmin, fmax);
std::cout << "mels: " << std::endl;
std::vector<std::vector<float>> mels = TransposeMel(mels_T);
ProcessMelSpectrogram(mels);
std::vector<float> inputMels(mels.size() * mels[0].size(), 0);
for (int i = 0; i < mels.size(); i++) {
std::copy(mels[i].begin(), mels[i].end(), inputMels.begin() + i * mels[0].size());
}
BinBuffer inputMelsBin(inputMels.data(), inputMels.size() * sizeof(float));
// tiny-encoder.ms模型推理
auto encoderBin = ReadBinFile(resourcesManager, "tiny-encoder.ms");
if (encoderBin.first == nullptr) {
return error_ret;
}
auto encoder = CreateMSLiteModel(encoderBin);
int ret = RunMSLiteModel(encoder, {inputMelsBin});
if (ret != OH_AI_STATUS_SUCCESS) {
OH_AI_ModelDestroy(&encoder);
return error_ret;
}
LOGI("run encoder ok!\n");
auto outputs = OH_AI_ModelGetOutputs(encoder);
auto n_layer_cross_k = GetMSOutput(outputs.handle_list[0]);
auto n_layer_cross_v = GetMSOutput(outputs.handle_list[1]);
// tiny-decoder-main.ms模型推理
std::vector<int> SOT_SEQUENCE = {WHISPER_SOT,
WHISPER_SOT + 1 + 1,
WHISPER_TRANSCRIBE, WHISPER_NO_TIMESTAMPS};
BinBuffer sotSequence(SOT_SEQUENCE.data(), SOT_SEQUENCE.size() * sizeof(int));
const std::string decoder_main_path = "tiny-decoder-main.ms";
auto decoderMainBin = ReadBinFile(resourcesManager, decoder_main_path);
if (decoderMainBin.first == nullptr) {
return error_ret;
}
auto decoder_main = CreateMSLiteModel(decoderMainBin);
int ret2 = RunMSLiteModel(decoder_main, {sotSequence, n_layer_cross_k, n_layer_cross_v});
if (ret2 != OH_AI_STATUS_SUCCESS) {
OH_AI_ModelDestroy(&decoder_main);
return error_ret;
}
LOGI("run decoder_main ok!\n");
auto decoderMainOut = OH_AI_ModelGetOutputs(decoder_main);
auto logitsBin = GetMSOutput(decoderMainOut.handle_list[0]);
auto out_n_layer_self_k_cache_Bin = GetMSOutput(decoderMainOut.handle_list[1]);
auto out_n_layer_self_v_cache_Bin = GetMSOutput(decoderMainOut.handle_list[2]);
// tiny-decoder-loop.ms模型推理
const std::string modelName3 = "tiny-decoder-loop.ms";
auto modelBuffer3 = ReadBinFile(resourcesManager, modelName3);
auto decoder_loop = CreateMSLiteModel(modelBuffer3);
const std::string dataName_embedding = "tiny-positional_embedding.bin"; // 获取输入数据
auto data_embedding = ReadBinFile(resourcesManager, dataName_embedding);
if (data_embedding.first == nullptr) {
return error_ret;
}
int loop_times = WHISPER_N_TEXT_CTX - SOT_SEQUENCE.size();
int offset_init = SOT_SEQUENCE.size();
auto output_tokens =
LoopPredict(decoder_loop, n_layer_cross_k, n_layer_cross_v, logitsBin, out_n_layer_self_k_cache_Bin,
out_n_layer_self_v_cache_Bin, data_embedding, loop_times, offset_init);
std::vector<std::string> token_tables = ProcessDataLines(ReadTokens(resourcesManager, "tiny-tokens.txt"));
std::string result;
for (const auto i : output_tokens) {
char str[1024];
base64_decode((const uint8 *)token_tables[i].c_str(), (uint32)token_tables[i].size(), str);
result += str;
}
LOGI("MS_LITE_LOG: result is -> %{public}s", result.c_str());
OH_AI_ModelDestroy(&encoder);
OH_AI_ModelDestroy(&decoder_main);
OH_AI_ModelDestroy(&decoder_loop);
napi_value out_data;
napi_create_string_utf8(env, result.c_str(), result.length(), &out_data);
return out_data;
}
- 编写CMake脚本,链接MindSpore Lite动态库。
# the minimum version of CMake.
cmake_minimum_required(VERSION 3.5.0)
project(test)
set(CMAKE_CXX_STANDARD 17) # AudioFile.h
set(CMAKE_CXX_STANDARD_REQUIRED TRUE)
set(NATIVERENDER_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR})
if(DEFINED PACKAGE_FIND_FILE)
include(${PACKAGE_FIND_FILE})
endif()
include_directories(${NATIVERENDER_ROOT_PATH}
${NATIVERENDER_ROOT_PATH}/include)
# libsamplerate
set(LIBSAMPLERATE_DIR ${NATIVERENDER_ROOT_PATH}/third_party/libsamplerate)
include_directories(${LIBSAMPLERATE_DIR}/include)
add_subdirectory(${LIBSAMPLERATE_DIR})
include_directories(${NATIVERENDER_ROOT_PATH}/third_party/opencc/include/opencc)
# src
aux_source_directory(src SRC_DIR)
include_directories(${NATIVERENDER_ROOT_PATH}/src)
include_directories(${CMAKE_SOURCE_DIR}/third_party)
file(GLOB SRC src/*.cc)
add_library(entry SHARED mslite_napi.cpp ${SRC})
target_link_libraries(entry PUBLIC samplerate)
target_link_libraries(entry PUBLIC mindspore_lite_ndk)
target_link_libraries(entry PUBLIC hilog_ndk.z)
target_link_libraries(entry PUBLIC rawfile.z)
target_link_libraries(entry PUBLIC ace_napi.z)
使用N-API将C++动态库封装成ArkTS模块
- 在 entry/src/main/cpp/types/libentry/Index.d.ts,定义ArkTS接口
runDemo()
。内容如下:
export const runDemo: (a: Object) => string;
- 在 oh-package.json5 文件,将API与so相关联,成为一个完整的ArkTS模块:
{
"name": "entry",
"version": "1.0.0",
"description": "MindSpore Lite inference module",
"main": "",
"author": "",
"license": "",
"dependencies": {
"libentry.so": "file:./src/main/cpp/types/libentry"
}
}
调用封装的ArkTS模块进行推理并输出结果
在 entry/src/main/ets/pages/Index.ets 中,调用封装的ArkTS模块,最后对推理结果进行处理。
// Index.ets
import msliteNapi from 'libentry.so'
import AVPlayerDemo from './player';
import { transverter, TransverterType, TransverterLanguage } from "@nutpi/chinese_transverter"
@Entry
@Component
struct Index {
@State message: string = 'MSLite Whisper Demo';
@State wavName: string = 'zh.wav';
@State content: string = '';
build() {
Row() {
Column() {
Text(this.message)
.fontSize(30)
.fontWeight(FontWeight.Bold);
Button() {
Text('播放示例音频')
.fontSize(20)
.fontWeight(FontWeight.Medium)
}
.type(ButtonType.Capsule)
.margin({
top: 20
})
.backgroundColor('#0D9FFB')
.width('40%')
.height('5%')
.onClick(async () =>{
// 通过实例调用类中的函数
console.info('MS_LITE_LOG: begin to play wav.');
let myClass = new AVPlayerDemo();
myClass.avPlayerFdSrcDemo();
})
Button() {
Text('识别示例音频')
.fontSize(20)
.fontWeight(FontWeight.Medium)
}
.type(ButtonType.Capsule)
.margin({
top: 20
})
.backgroundColor('#0D9FFB')
.width('40%')
.height('5%')
.onClick(() => {
let resMgr = this.getUIContext()?.getHostContext()?.getApplicationContext().resourceManager;
// 调用封装的runDemo函数
console.info('MS_LITE_LOG: *** Start MSLite Demo ***');
let output = msliteNapi.runDemo(resMgr);
console.info('MS_LITE_LOG: output length = ', output.length, ';value = ', output.slice(0, 20));
this.content = output;
console.info('MS_LITE_LOG: *** Finished MSLite Demo ***');
})
// 显示识别内容
if (this.content) {
Text('识别内容: \n' + transverter({
type: TransverterType.SIMPLIFIED,
str: this.content,
language: TransverterLanguage.ZH_CN
}) + '\n').focusable(true).fontSize(20).height('20%')
}
}.width('100%')
}
.height('100%')
}
}
调测验证
- 在DevEco Studio中连接设备,点击Run entry,编译Hap,有如下显示:
Launching com.samples.mindsporelitecdemoasr
$ hdc shell aa force-stop com.samples.mindsporelitecdemoasr
$ hdc shell mkdir data/local/tmp/xxx
$ hdc file send E:\xxx\entry\build\default\outputs\default\entry-default-signed.hap "data/local/tmp/xxx"
$ hdc shell bm install -p data/local/tmp/xxx
$ hdc shell rm -rf data/local/tmp/xxx
$ hdc shell aa start -a EntryAbility -b com.samples.mindsporelitecdemoasr
com.samples.mindsporelitecdemoasr successfully launched...
- 在设备屏幕点击
播放示例音频
按钮,会播放本示例音频文件。点击识别示例音频
按钮,设备屏幕显示本示例音频文件的中文内容。在日志打印结果中,过滤关键字”MS_LITE_LOG“,可得到如下结果:
05-16 14:53:44.200 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: begin to play wav.
05-16 14:53:44.210 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I [a92ab1e0f831191, 0, 0] MS_LITE_LOG: AVPlayer state initialized called.
05-16 14:53:44.228 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I [a92ab1e0f831191, 0, 0] MS_LITE_LOG: AVPlayer state prepared called.
05-16 14:53:44.242 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer state playing called.
05-16 14:53:44.242 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer start to seek.
05-16 14:53:44.372 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer seek succeeded, seek time is 0
05-16 14:53:49.621 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer state completed called.
05-16 14:53:49.646 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer state stopped called.
05-16 14:53:49.647 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer state idle called.
05-16 14:53:49.649 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: AVPlayer state released called.
05-16 14:53:53.282 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: *** Start MSLite Demo ***
05-16 14:53:53.926 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr I MS_LITE_LOG: Build MSLite model success.
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: Run MSLite model Predict success.
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: Get model outputs:
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: - Tensor 0 name is: n_layer_cross_k.
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: - Tensor 0 size is: 9216000.
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: - Tensor data is:
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: -1.14678 -2.30223 0.868679 0.284441 1.03233 -2.02062 0.688163 -0.732034 -1.10553 1.43459 0.083885 -0.116173 -0.772636 1.5466 -0.631993 -0.897929 -0.0501685 -1.62517 0.375988 -1.77772 -0.432178
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: - Tensor 1 name is: n_layer_cross_v.
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: - Tensor 1 size is: 9216000.
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: - Tensor data is:
05-16 14:53:54.260 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: 0.0876085 -0.560317 -0.652518 -0.116969 -0.182608 -9.40531e-05 0.186293 0.123206 0.0127445 0.0708352 -0.489624 -0.226322 -0.0686949 -0.0341293 -0.0719619 0.103588 0.398025 -0.444261 0.396124 -0.347295 0.00541205
05-16 14:53:54.430 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr I MS_LITE_LOG: Build MSLite model success.
05-16 14:53:54.462 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr D MS_LITE_LOG: Run MSLite model Predict success.
......
05-16 14:53:55.272 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr I MS_LITE_LOG: run decoder loop 16 ok!
token = 50257
05-16 14:53:55.307 1679-1679 A00000/[MSLiteNapi] com.sampl...cdemoasr I MS_LITE_LOG: result is -> 我認為跑步最重要的就是給我帶來了身體健康
05-16 14:53:55.334 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: output length = 20 ;value = 我認為跑步最重要的就是給我帶來了身體健康
05-16 14:53:55.334 1679-1679 A03d00/JSAPP com.sampl...cdemoasr I MS_LITE_LOG: *** Finished MSLite Demo ***
效果示意
在设备上,点击播放示例音频按钮,会播放本示例音频文件。点击识别示例音频按钮,设备屏幕显示本示例音频文件的中文内容。
初始页面 | 点击识别示例音频按钮后 |
---|---|
![]() |
![]() |
相关实例
针对使用MindSpore Lite进行语音识别应用的开发,有以下相关实例可供参考:
你可能感兴趣的鸿蒙文章
harmony 鸿蒙MindSpore Lite Kit简介
harmony 鸿蒙MindSpore Lite Kit(昇思推理框架服务)
harmony 鸿蒙使用MindSpore Lite实现图像分类(ArkTS)
harmony 鸿蒙使用MindSpore Lite实现图像分类(C/C++)
harmony 鸿蒙使用MindSpore Lite进行模型转换
0
赞
- 所属分类: 后端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦