harmony 鸿蒙XComponent Development
XComponent Development
When to Use
NativeXComponent provides an instance for the <XComponent> at the native layer, which can be used as a bridge for binding with the <XComponent> at the JS layer. The NDK APIs provided by the <XComponent> depend on this instance. The provided APIs include those for obtaining a native window, obtaining the layout or event information of the <XComponent>, registering the lifecycle callbacks of the <XComponent>, and registering the callbacks for the touch, mouse, and key events of the <XComponent>. You can use the provided APIs in the following scenarios:
- Register the lifecycle and event callbacks of the <XComponent>.
- In these callbacks, you can initialize the environment, obtain the current state, and respond to various events.
- Use the native window and EGL APIs to develop custom drawing content, and apply for and submit buffers to the graphics queue.
Available APIs
API | Description. |
---|---|
OH_NativeXComponent_GetXComponentId(OH_NativeXComponent* component, char* id, uint64_t* size) | Obtains the ID of the <XComponent>. |
OH_NativeXComponent_GetXComponentSize(OH_NativeXComponent* component, const void* window, uint64_t* width, uint64_t* height) | Obtains the size of the surface held by the <XComponent>. |
OH_NativeXComponent_GetXComponentOffset(OH_NativeXComponent* component, const void* window, double* x, double* y) | Obtains the offset of the surface held by the <XComponent> relative to the upper left corner of the window. |
OH_NativeXComponent_GetTouchEvent(OH_NativeXComponent* component, const void* window, OH_NativeXComponent_TouchEvent* touchEvent) | Obtains the touch event triggered by the <XComponent>. For details about the attribute values in touchEvent, see OH_NativeXComponent_TouchEvent. |
OH_NativeXComponent_GetTouchPointToolType(OH_NativeXComponent* component, uint32_t pointIndex, OH_NativeXComponent_TouchPointToolType* toolType) | Obtains the tool type of the <XComponent> touch point. |
OH_NativeXComponent_GetTouchPointTiltX(OH_NativeXComponent* component, uint32_t pointIndex, float* tiltX) | Obtains the tilt angle of the <XComponent> touch point relative to the x-axis. |
OH_NativeXComponent_GetTouchPointTiltY(OH_NativeXComponent* component, uint32_t pointIndex, float* tiltY) | Obtains the tilt angle of the <XComponent> touch point relative to the y-axis. |
OH_NativeXComponent_GetMouseEvent(OH_NativeXComponent* component, const void* window, OH_NativeXComponent_MouseEvent* mouseEvent) | Obtains the mouse event triggered by the <XComponent>. |
OH_NativeXComponent_RegisterCallback(OH_NativeXComponent* component, OH_NativeXComponent_Callback* callback) | Registers the lifecycle and touch event callback for this OH_NativeXComponent instance. |
OH_NativeXComponent_RegisterMouseEventCallback(OH_NativeXComponent* component, OH_NativeXComponent_MouseEvent_Callback* callback) | Registers the mouse event callback for this OH_NativeXComponent instance. |
OH_NativeXComponent_RegisterFocusEventCallback(OH_NativeXComponent* component, void (*callback)(OH_NativeXComponent* component, void* window)) | Registers the focus obtaining event callback function for this OH_NativeXComponent instance. |
OH_NativeXComponent_RegisterKeyEventCallback(OH_NativeXComponent* component, void (*callback)(OH_NativeXComponent* component, void* window)) | Registers the key event callback for this OH_NativeXComponent instance. |
OH_NativeXComponent_RegisterBlurEventCallback(OH_NativeXComponent* component, void (*callback)(OH_NativeXComponent* component, void* window)) | Registers the focus loss event callback for this OH_NativeXComponent instance. |
OH_NativeXComponent_GetKeyEvent(OH_NativeXComponent* component, OH_NativeXComponent_KeyEvent** keyEvent) | Obtains the key event triggered by the <XComponent>. |
OH_NativeXComponent_GetKeyEventAction(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_KeyAction* action) | Obtains the action of a key event. |
OH_NativeXComponent_GetKeyEventCode(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_KeyCode* code) | Obtains the key code value of a key event. |
OH_NativeXComponent_GetKeyEventSourceType(OH_NativeXComponent_KeyEvent* keyEvent, OH_NativeXComponent_EventSourceType* sourceType) | Obtains the input source type of a key event. |
OH_NativeXComponent_GetKeyEventDeviceId(OH_NativeXComponent_KeyEvent* keyEvent, int64_t* deviceId) | Obtains the device ID of a key event. |
OH_NativeXComponent_GetKeyEventTimestamp(OH_NativeXComponent_KeyEvent* keyEvent, int64_t* timestamp) | Obtains the timestamp of a key event. |
Lifecycle Description
You can use the <XComponent> to develop EGL/OpenGL ES rendering by using the following code on the ArkTS side:
@Builder
function myComponent() {
XComponent({ id: 'xcomponentId1', type: 'surface', libraryname: 'nativerender' })
.onLoad((context) => {})
.onDestroy(() => {})
}
onLoad Event
Trigger time: when the surface of the <XComponent> is ready.
context parameter: where the native API exposed on the module is mounted. Its usage is similar to the usage of a context instance obtained after the module is directly loaded using import context from “libnativerender.so”.
Time sequence: subject to the surface. The figure below shows the time sequence of the onLoad event and the OnSurfaceCreated event at the native layer.
onDestroy Event
Trigger time: when the <XComponent> is destroyed, in the same manner as that when an ArkUI component is destroyed. The figure below shows the time sequence of the onDestroy event and the OnSurfaceDestroyed event at the native layer.
How to Develop
The following describes how to use the <XComponent> to call the native APIs to create the EGL/GLES environment, draw graphics on the main page, and change graphics colors.
Define the <XComponent> on the GUI.
@Entry @Component struct Index { @State message: string = 'Hello World' xComponentContext: object|undefined = undefined; xComponentAttrs: XComponentAttrs = { id: 'xcomponentId', type: XComponentType.SURFACE, libraryname: 'nativerender' } build() { Row() { // ... // Define XComponent in an .ets file. XComponent(this.xComponentAttrs) .focusable(true) // Set the component to be able to respond to key events. .onLoad((xComponentContext) => { this.xComponentContext = xComponentContext; }) .onDestroy(() => { console.log("onDestroy"); }) // ... } .height('100%') } } interface XComponentAttrs { id: string; type: number; libraryname: string; }
Register the N-API module. For details, see Using Native APIs in Application Projects.
// In the napi_init.cpp file, use the Init method to register the target function to transfer the encapsulated C++ methods for the JS side to call. EXTERN_C_START static napi_value Init(napi_env env, napi_value exports) { // ... // Expose the getContext() API to the JS side. napi_property_descriptor desc[] = { { "getContext", nullptr, PluginManager::GetContext, nullptr, nullptr, nullptr, napi_default, nullptr } }; if (napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Init", "napi_define_properties failed"); return nullptr; } // Check whether the environment variables in the method contain the <XComponent> instance. If the instance exists, register the drawing-related API. PluginManager::GetInstance()->Export(env, exports); return exports; } EXTERN_C_END // Write the API description. You can modify the corresponding parameters as required. static napi_module nativerenderModule = { .nm_version = 1, .nm_flags = 0, .nm_filename = nullptr, // Entry function .nm_register_func = Init, // Module name .nm_modname = "nativerender", .nm_priv = ((void *)0), .reserved = { 0 } }; // The method decorated by __attribute__((constructor)) is automatically called by the system. The N-API napi_module_register() is used to transfer the module description for module registration. extern "C" __attribute__((constructor)) void RegisterModule(void) { napi_module_register(&nativerenderModule); } // Use the napi_define_properties method in the N-APIs to expose the drawPattern() method to the JS side and call the drawPattern() method on the JS side to draw content. void PluginRender::Export(napi_env env, napi_value exports) { // ... // Register the function as the JS API drawPattern. napi_property_descriptor desc[] = { { "drawPattern", nullptr, PluginRender::NapiDrawPattern, nullptr, nullptr, nullptr, napi_default, nullptr } }; if (napi_define_properties(env, exports, sizeof(desc) / sizeof(desc[0]), desc) != napi_ok) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "Export: napi_define_properties failed"); } }
Register the <XComponent> event callback and use the N-API to implement it.
(1) Define the callbacks for the touch event of the <XComponent> and for when a surface is successfully created, changed, or destroyed.
// Define the OnSurfaceCreatedCB() function to encapsulate the initialization environment and drawing background.
void OnSurfaceCreatedCB(OH_NativeXComponent *component, void *window)
{
// ...
// Obtain the ID of the <XComponent>, that is, the id parameter in the <XComponent> struct on the JS side.
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
"OnSurfaceCreatedCB: Unable to get XComponent id");
return;
}
// Initialize the environment and draw the background.
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
uint64_t width;
uint64_t height;
// Obtain the size of the surface held by the <XComponent>.
int32_t xSize = OH_NativeXComponent_GetXComponentSize(component, window, &width, &height);
if ((xSize == OH_NATIVEXCOMPONENT_RESULT_SUCCESS) && (render != nullptr)) {
if (render->eglCore_->EglContextInit(window, width, height)) {
render->eglCore_->Background();
}
}
}
// Define the OnSurfaceChangedCB() function.
void OnSurfaceChangedCB(OH_NativeXComponent *component, void *window)
{
// ...
// Obtain the ID of the <XComponent>.
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
"OnSurfaceChangedCB: Unable to get XComponent id");
return;
}
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
if (render != nullptr) {
// Encapsulate the OnSurfaceChanged method.
render->OnSurfaceChanged(component, window);
}
}
// Define the OnSurfaceDestroyedCB() function and encapsulate in it the Release() method in the PluginRender class for releasing resources.
void OnSurfaceDestroyedCB(OH_NativeXComponent *component, void *window)
{
// ...
// Obtain the ID of the <XComponent>.
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
"OnSurfaceDestroyedCB: Unable to get XComponent id");
return;
}
std::string id(idStr);
// Release resources.
PluginRender::Release(id);
}
// Define the DispatchTouchEventCB() function, which is triggered when a touch event is responded to.
void DispatchTouchEventCB(OH_NativeXComponent *component, void *window)
{
// ...
// Obtain the ID of the <XComponent>.
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
if (OH_NativeXComponent_GetXComponentId(component, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "Callback",
"DispatchTouchEventCB: Unable to get XComponent id");
return;
}
std::string id(idStr);
PluginRender *render = PluginRender::GetInstance(id);
if (render != nullptr) {
// Encapsulate the OnTouchEvent method.
render->OnTouchEvent(component, window);
}
}
// Define the DispatchMouseEventCB() function, which is triggered when a mouse event is responded to.
void DispatchMouseEventCB(OH_NativeXComponent *component, void *window) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "DispatchMouseEventCB");
int32_t ret;
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
return;
}
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
if (render) {
// Encapsulate the OnMouseEvent method.
render->OnMouseEvent(component, window);
}
}
// Define the DispatchHoverEventCB() function, which is triggered when the mouse pointer hover event is responded to.
void DispatchHoverEventCB(OH_NativeXComponent *component, bool isHover) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "DispatchHoverEventCB");
int32_t ret;
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
return;
}
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
if (render) {
// Encapsulate the OnHoverEvent method.
render->OnHoverEvent(component, isHover);
}
}
// Define the OnFocusEventCB() function, which is triggered when a focus obtaining event is responded to.
void OnFocusEventCB(OH_NativeXComponent *component, void *window) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnFocusEventCB");
int32_t ret;
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
return;
}
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
if (render) {
// Encapsulate the OnFocusEvent method.
render->OnFocusEvent(component, window);
}
}
// Define the OnBlurEventCB() function, which is triggered when the focus loss event is responded to.
void OnBlurEventCB(OH_NativeXComponent *component, void *window) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnBlurEventCB");
int32_t ret;
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
return;
}
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
if (render) {
// Encapsulate the OnBlurEvent method.
render->OnBlurEvent(component, window);
}
}
// Define the OnKeyEventCB() function, which is triggered when a key event is responded to.
void OnKeyEventCB(OH_NativeXComponent *component, void *window) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "Callback", "OnKeyEventCB");
int32_t ret;
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = {};
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
ret = OH_NativeXComponent_GetXComponentId(component, idStr, &idSize);
if (ret != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
return;
}
std::string id(idStr);
auto render = PluginRender::GetInstance(id);
if (render) {
// Encapsulate the OnKeyEvent method.
render->OnKeyEvent(component, window);
}
}
// Define an OnSurfaceChanged() method.
void PluginRender::OnSurfaceChanged(OH_NativeXComponent* component, void* window)
{
// ...
std::string id(idStr);
PluginRender* render = PluginRender::GetInstance(id);
double offsetX;
double offsetY;
// Obtain the offset of the surface held by the <XComponent> relative to the upper left corner of the window.
OH_NativeXComponent_GetXComponentOffset(component, window, &offsetX, &offsetY);
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OH_NativeXComponent_GetXComponentOffset",
"offsetX = %{public}lf, offsetY = %{public}lf", offsetX, offsetY);
uint64_t width;
uint64_t height;
OH_NativeXComponent_GetXComponentSize(component, window, &width, &height);
if (render != nullptr) {
render->eglCore_->UpdateSize(width, height);
}
}
// Define an OnTouchEvent() method.
void PluginRender::OnTouchEvent(OH_NativeXComponent* component, void* window)
{
// ...
OH_NativeXComponent_TouchEvent touchEvent;
// Obtain the touch event triggered by the <XComponent>.
OH_NativeXComponent_GetTouchEvent(component, window, &touchEvent);
// Obtain the x coordinate of the <XComponent> touch point relative to the left edge of the <XComponent> and the y coordinate of the <XComponent> touch point relative to the upper edge of the <XComponent>.
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OnTouchEvent",
"touch info: x = %{public}lf, y = %{public}lf", touchEvent.x, touchEvent.y);
// Obtain the x coordinate and y-coordinate of the <XComponent> touch point relative to the upper left corner of the application window where the <XComponent> is located.
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OnTouchEvent",
"touch info: screenX = %{public}lf, screenY = %{public}lf", touchEvent.screenX, touchEvent.screenY);
std::string id(idStr);
PluginRender* render = PluginRender::GetInstance(id);
if (render != nullptr && touchEvent.type == OH_NativeXComponent_TouchEventType::OH_NATIVEXCOMPONENT_UP) {
render->eglCore_->ChangeColor();
hasChangeColor_ = 1;
}
float tiltX = 0.0f;
float tiltY = 0.0f;
OH_NativeXComponent_TouchPointToolType toolType =
OH_NativeXComponent_TouchPointToolType::OH_NATIVEXCOMPONENT_TOOL_TYPE_UNKNOWN;
// Obtain the tool type of the <XComponent> touch point.
OH_NativeXComponent_GetTouchPointToolType(component, 0, &toolType);
// Obtain the tilt angle of the <XComponent> touch point relative to the x-axis.
OH_NativeXComponent_GetTouchPointTiltX(component, 0, &tiltX);
// Obtain the tilt angle of the <XComponent> touch point relative to the y-axis.
OH_NativeXComponent_GetTouchPointTiltY(component, 0, &tiltY);
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "OnTouchEvent",
"touch info: toolType = %{public}d, tiltX = %{public}lf, tiltY = %{public}lf", toolType, tiltX, tiltY);
}
// Define an OnMouseEvent() method.
void PluginRender::OnMouseEvent(OH_NativeXComponent *component, void *window) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "OnMouseEvent");
OH_NativeXComponent_MouseEvent mouseEvent;
// Obtain the mouse event triggered by the <XComponent>.
int32_t ret = OH_NativeXComponent_GetMouseEvent(component, window, &mouseEvent);
if (ret == OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "MouseEvent Info: x = %{public}f, y = %{public}f, action = %{public}d, button = %{public}d", mouseEvent.x, mouseEvent.y, mouseEvent.action, mouseEvent.button);
} else {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "GetMouseEvent error");
}
}
// Define an OnMouseEvent() method.
void PluginRender::OnKeyEvent(OH_NativeXComponent *component, void *window) {
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "OnKeyEvent");
OH_NativeXComponent_KeyEvent *keyEvent = nullptr;
// Obtain the key event triggered by the <XComponent>.
if (OH_NativeXComponent_GetKeyEvent(component, &keyEvent) >= 0) {
OH_NativeXComponent_KeyAction action;
// Obtain the action of a key event.
OH_NativeXComponent_GetKeyEventAction(keyEvent, &action);
OH_NativeXComponent_KeyCode code;
// Obtain the key code value of a key event.
OH_NativeXComponent_GetKeyEventCode(keyEvent, &code);
OH_NativeXComponent_EventSourceType sourceType;
// Obtain the input source type of a key event.
OH_NativeXComponent_GetKeyEventSourceType(keyEvent, &sourceType);
int64_t deviceId;
// Obtain the device ID of a key event.
OH_NativeXComponent_GetKeyEventDeviceId(keyEvent, &deviceId);
int64_t timeStamp;
// Obtain the timestamp of a key event.
OH_NativeXComponent_GetKeyEventTimestamp(keyEvent, &timeStamp);
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "KeyEvent Info: action=%{public}d, code=%{public}d, sourceType=%{public}d, deviceId=%{public}ld, timeStamp=%{public}ld", action, code, sourceType, deviceId, timeStamp);
} else {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "GetKeyEvent error");
}
}
(2) Register the <XComponent> event callback and call the method defined in step 3.1 when the <XComponent> event is triggered.
```c++
void PluginRender::RegisterCallback(OH_NativeXComponent *nativeXComponent) {
// Set the callback of the component creation event. When the component is created, related operations are triggered to initialize the environment and draw the background.
renderCallback_.OnSurfaceCreated = OnSurfaceCreatedCB;
// Set the callback of the component change event. When the component changes, related operations are triggered.
renderCallback_.OnSurfaceChanged = OnSurfaceChangedCB;
// Set the callback of the component destruction event. When the component is destroyed, related operations are triggered to release the requested resources.
renderCallback_.OnSurfaceDestroyed = OnSurfaceDestroyedCB;
// Set the callback of the touch event. When the touch event is triggered, the N-API is called to call the original C++ method.
renderCallback_.DispatchTouchEvent = DispatchTouchEventCB;
// Register OH_NativeXComponent_Callback with NativeXComponent.
OH_NativeXComponent_RegisterCallback(nativeXComponent, &renderCallback_);
// Set the callback of the mouse event. When the event is triggered, the N-API is called to call the original C++ method.
mouseCallback_.DispatchMouseEvent = DispatchMouseEventCB;
// Set the callback of the mouse pointer hover event. When the event is triggered, the N-API is called to call the original C++ method.
mouseCallback_.DispatchHoverEvent = DispatchHoverEventCB;
// Register OH_NativeXComponent_MouseEvent_Callback with NativeXComponent.
OH_NativeXComponent_RegisterMouseEventCallback(nativeXComponent, &mouseCallback_);
// Register the OnFocusEventCB method with NativeXComponent.
OH_NativeXComponent_RegisterFocusEventCallback(nativeXComponent, OnFocusEventCB);
// Register the OnKeyEventCB method with NativeXComponent.
OH_NativeXComponent_RegisterKeyEventCallback(nativeXComponent, OnKeyEventCB);
// Register the OnBlurEventCB method with NativeXComponent.
OH_NativeXComponent_RegisterBlurEventCallback(nativeXComponent, OnBlurEventCB);
}
```
(3) Define the NapiDrawPattern method, which will be called by the drawPattern() method exposed to the JS side.
```c++
napi_value PluginRender::NapiDrawPattern(napi_env env, napi_callback_info info)
{
// ...
// Obtain environment variables.
napi_value thisArg;
if (napi_get_cb_info(env, info, nullptr, nullptr, &thisArg, nullptr) != napi_ok) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_get_cb_info fail");
return nullptr;
}
// Obtain the XComponent instance from the environment variables.
napi_value exportInstance;
if (napi_get_named_property(env, thisArg, OH_NATIVE_XCOMPONENT_OBJ, &exportInstance) != napi_ok) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender",
"NapiDrawPattern: napi_get_named_property fail");
return nullptr;
}
// Use napi_unwrap to obtain the pointer to the XComponent instance.
OH_NativeXComponent *nativeXComponent = nullptr;
if (napi_unwrap(env, exportInstance, reinterpret_cast<void **>(&nativeXComponent)) != napi_ok) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender", "NapiDrawPattern: napi_unwrap fail");
return nullptr;
}
// Obtain the ID of the XComponent instance.
char idStr[OH_XCOMPONENT_ID_LEN_MAX + 1] = { '\0' };
uint64_t idSize = OH_XCOMPONENT_ID_LEN_MAX + 1;
if (OH_NativeXComponent_GetXComponentId(nativeXComponent, idStr, &idSize) != OH_NATIVEXCOMPONENT_RESULT_SUCCESS) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "PluginRender",
"NapiDrawPattern: Unable to get XComponent id");
return nullptr;
}
std::string id(idStr);
PluginRender *render = PluginRender::GetInstance(id);
if (render) {
// Call the drawing method.
render->eglCore_->Draw();
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "PluginRender", "render->eglCore_->Draw() executed");
}
return nullptr;
}
```
Initialize the environment, including initializing the available EGLDisplay, determining the available surface configuration, creating the rendering area surface, and creating and associating the context.
void EGLCore::UpdateSize(int width, int height) { width_ = width; height_ = height; if (width_ > 0) { // Calculate the width percentage of the drawn rectangle. width_Percent_ = FIFTY_PERCENT * height_ / width_; } } bool EGLCore::EglContextInit(void *window, int width, int height) { // ... UpdateSize(width, height); eglWindow_ = static_cast<EGLNativeWindowType>(window); // Initialize the display. eglDisplay_ = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (eglDisplay_ == EGL_NO_DISPLAY) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglGetDisplay: unable to get EGL display"); return false; } // Initialize the EGL. EGLint majorVersion; EGLint minorVersion; if (!eglInitialize(eglDisplay_, &majorVersion, &minorVersion)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglInitialize: unable to get initialize EGL display"); return false; } // Select the configuration. const EGLint maxConfigSize = 1; EGLint numConfigs; if (!eglChooseConfig(eglDisplay_, ATTRIB_LIST, &eglConfig_, maxConfigSize, &numConfigs)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglChooseConfig: unable to choose configs"); return false; } // Create an environment. return CreateEnvironment(); }
bool EGLCore::CreateEnvironment() { // ... // Create a surface. eglSurface_ = eglCreateWindowSurface(eglDisplay_, eglConfig_, eglWindow_, NULL); // ... // Create a context. eglContext_ = eglCreateContext(eglDisplay_, eglConfig_, EGL_NO_CONTEXT, CONTEXT_ATTRIBS); if (!eglMakeCurrent(eglDisplay_, eglSurface_, eglSurface_, eglContext_)) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "eglMakeCurrent failed"); return false; } // Create a program. program_ = CreateProgram(VERTEX_SHADER, FRAGMENT_SHADER); if (program_ == PROGRAM_ERROR) { OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "CreateProgram: unable to create program"); return false; } return true; }
Implement the rendering function.
(1) Draw the background.
```c++
// Draw the background color #f4f4f4.
const GLfloat BACKGROUND_COLOR[] = { 244.0f / 255, 244.0f / 255, 244.0f / 255, 1.0f };
// Draw the background vertex.
const GLfloat BACKGROUND_RECTANGLE_VERTICES[] = {
-1.0f, 1.0f,
1.0f, 1.0f,
1.0f, -1.0f,
-1.0f, -1.0f
};
```
```c++
// Draw the background color.
void EGLCore::Background()
{
GLint position = PrepareDraw();
if (position == POSITION_ERROR) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background get position failed");
return;
}
if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES,
sizeof(BACKGROUND_RECTANGLE_VERTICES))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background execute draw failed");
return;
}
if (!FinishDraw()) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Background FinishDraw failed");
return;
}
}
// Prepare for drawing and obtain the value of position. When the creation is successful, the value of position starts from 0.
GLint EGLCore::PrepareDraw()
{
if ((eglDisplay_ == nullptr)||(eglSurface_ == nullptr)||(eglContext_ == nullptr)||
(!eglMakeCurrent(eglDisplay_, eglSurface_, eglSurface_, eglContext_))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "PrepareDraw: param error");
return POSITION_ERROR;
}
glViewport(DEFAULT_X_POSITION, DEFAULT_Y_POSITION, width_, height_);
glClearColor(GL_RED_DEFAULT, GL_GREEN_DEFAULT, GL_BLUE_DEFAULT, GL_ALPHA_DEFAULT);
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(program_);
return glGetAttribLocation(program_, POSITION_NAME);
}
// Draw a specified color in the specified area based on the input parameters.
bool EGLCore::ExecuteDraw(GLint position, const GLfloat *color, const GLfloat shapeVertices[],
unsigned long vertSize)
{
if ((position > 0)||(color == nullptr)||(vertSize / sizeof(shapeVertices[0]) != SHAPE_VERTICES_SIZE)) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ExecuteDraw: param error");
return false;
}
glVertexAttribPointer(position, POINTER_SIZE, GL_FLOAT, GL_FALSE, 0, shapeVertices);
glEnableVertexAttribArray(position);
glVertexAttrib4fv(1, color);
glDrawArrays(GL_TRIANGLE_FAN, 0, TRIANGLE_FAN_SIZE);
glDisableVertexAttribArray(position);
return true;
}
// End the drawing operation.
bool EGLCore::FinishDraw()
{
// Forcibly refresh the buffer.
glFlush();
glFinish();
return eglSwapBuffers(eglDisplay_, eglSurface_);
}
```
(2) Draw the shape.
```c++
void EGLCore::Draw()
{
flag_ = false;
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "EGLCore", "Draw");
GLint position = PrepareDraw();
if (position == POSITION_ERROR) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw get position failed");
return;
}
// Draw the background.
if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES,
sizeof(BACKGROUND_RECTANGLE_VERTICES))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw background failed");
return;
}
// Divide the pentagon into five quadrilaterals and calculate the four vertices of one of the quadrilaterals.
GLfloat rotateX = 0;
GLfloat rotateY = FIFTY_PERCENT * height_;
GLfloat centerX = 0;
GLfloat centerY = -rotateY * (M_PI / 180 * 54) * (M_PI / 180 * 18);
GLfloat leftX = -rotateY * (M_PI / 180 * 18);
GLfloat leftY = 0;
GLfloat rightX = rotateY * (M_PI / 180 * 18);
GLfloat rightY = 0;
// Determine the vertices for drawing the quadrilateral, which are represented by the percentages of the drawing area.
const GLfloat shapeVertices[] = {
centerX / width_, centerY / height_,
leftX / width_, leftY / height_,
rotateX / width_, rotateY / height_,
rightX / width_, rightY / height_
};
if (!ExecuteDrawStar(position, DRAW_COLOR, shapeVertices, sizeof(shapeVertices))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
return;
}
GLfloat rad = M_PI / 180 * 72;
for (int i = 0; i < 4; ++i)
{
// Obtain the vertices of the other four quadrilaterals through rotation.
rotate2d(centerX, centerY, &rotateX, &rotateY,rad);
rotate2d(centerX, centerY, &leftX, &leftY,rad);
rotate2d(centerX, centerY, &rightX, &rightY,rad);
// Determine the vertices for drawing the quadrilateral, which are represented by the percentages of the drawing area.
const GLfloat shapeVertices[] = {
centerX / width_, centerY / height_,
leftX / width_, leftY / height_,
rotateX / width_, rotateY / height_,
rightX / width_, rightY / height_
};
// Draw the shape.
if (!ExecuteDrawStar(position, DRAW_COLOR, shapeVertices, sizeof(shapeVertices))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
return;
}
}
// End drawing.
if (!FinishDraw()) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw FinishDraw failed");
return;
}
flag_ = true;
}
```
(3) Change the colors, by drawing a new shape with the same size but different colors and replacing the original shape with the new shape.
```c++
void EGLCore::ChangeColor()
{
if (!flag_) {
return;
}
OH_LOG_Print(LOG_APP, LOG_INFO, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor");
GLint position = PrepareDraw();
if (position == POSITION_ERROR) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor get position failed");
return;
}
// Draw the background.
if (!ExecuteDraw(position, BACKGROUND_COLOR, BACKGROUND_RECTANGLE_VERTICES,
sizeof(BACKGROUND_RECTANGLE_VERTICES))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor execute draw background failed");
return;
}
// Determine the vertices for drawing the quadrilateral, which are represented by the percentages of the drawing area.
GLfloat rotateX = 0;
GLfloat rotateY = FIFTY_PERCENT * height_;
GLfloat centerX = 0;
GLfloat centerY = -rotateY * (M_PI / 180 * 54) * (M_PI / 180 * 18);
GLfloat leftX = -rotateY * (M_PI / 180 * 18);
GLfloat leftY = 0;
GLfloat rightX = rotateY * (M_PI / 180 * 18);
GLfloat rightY = 0;
// Determine the vertices for drawing the quadrilateral, which are represented by the percentages of the drawing area.
const GLfloat shapeVertices[] = {
centerX / width_, centerY / height_,
leftX / width_, leftY / height_,
rotateX / width_, rotateY / height_,
rightX / width_, rightY / height_
};
// Use the new colors for drawing.
if (!ExecuteDrawStar2(position, CHANGE_COLOR, shapeVertices, sizeof(shapeVertices))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
return;
}
GLfloat rad = M_PI / 180 * 72;
for (int i = 0; i < 4; ++i)
{
// Obtain the vertices of the other four quadrilaterals through rotation.
rotate2d(centerX, centerY, &rotateX, &rotateY,rad);
rotate2d(centerX, centerY, &leftX, &leftY,rad);
rotate2d(centerX, centerY, &rightX, &rightY,rad);
// Determine the vertices for drawing the quadrilateral, which are represented by the percentages of the drawing area.
const GLfloat shapeVertices[] = {
centerX / width_, centerY / height_,
leftX / width_, leftY / height_,
rotateX / width_, rotateY / height_,
rightX / width_, rightY / height_
};
// Use the new colors for drawing.
if (!ExecuteDrawStar2(position, CHANGE_COLOR, shapeVertices, sizeof(shapeVertices))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Draw execute draw star failed");
return;
}
}
// End drawing.
if (!FinishDraw()) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "ChangeColor FinishDraw failed");
}
}
```
- Release related resources.
(1) Create the Release() method in the EGLCore class to release the resources requested during environment initialization, including the window display, rendering area surface, and environment context.
```c++
void EGLCore::Release()
{
// Release the surface.
if ((eglDisplay_ == nullptr)||(eglSurface_ == nullptr)||(!eglDestroySurface(eglDisplay_, eglSurface_))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglDestroySurface failed");
}
// Release the context.
if ((eglDisplay_ == nullptr)||(eglContext_ == nullptr)||(!eglDestroyContext(eglDisplay_, eglContext_))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglDestroyContext failed");
}
// Release the display.
if ((eglDisplay_ == nullptr)||(!eglTerminate(eglDisplay_))) {
OH_LOG_Print(LOG_APP, LOG_ERROR, LOG_PRINT_DOMAIN, "EGLCore", "Release eglTerminate failed");
}
}
```
(2) Add the Release() method to the PluginRender class to release the EGLCore and PluginRender instances.
```c++
void PluginRender::Release(std::string &id)
{
PluginRender *render = PluginRender::GetInstance(id);
if (render != nullptr) {
render->eglCore_->Release();
delete render->eglCore_;
render->eglCore_ = nullptr;
delete render;
render = nullptr;
instance_.erase(instance_.find(id));
}
}
```
Use the CMake toolchain to compile the C++ source code into a dynamic link library (DLL) file.
# Set the minimum CMake version. cmake_minimum_required(VERSION 3.4.1) # Project name project(XComponent) set(NATIVERENDER_ROOT_PATH ${CMAKE_CURRENT_SOURCE_DIR}) add_definitions(-DOHOS_PLATFORM) # Set the header file search directory. include_directories( ${NATIVERENDER_ROOT_PATH} ${NATIVERENDER_ROOT_PATH}/include ) # Add the **nativerender** dynamic library, with the **libnativerender.so** library file. Add the .cpp file. add_library(nativerender SHARED render/egl_core.cpp render/plugin_render.cpp manager/plugin_manager.cpp napi_init.cpp ) find_library( EGL-lib EGL ) find_library( GLES-lib GLESv3 ) find_library( hilog-lib hilog_ndk.z ) find_library( libace-lib ace_ndk.z ) find_library( libnapi-lib ace_napi.z ) find_library( libuv-lib uv ) # Add the library to be linked. target_link_libraries(nativerender PUBLIC ${EGL-lib} ${GLES-lib} ${hilog-lib} ${libace-lib} ${libnapi-lib} ${libuv-lib})
你可能感兴趣的鸿蒙文章
harmony 鸿蒙Drawing and Display Sample
harmony 鸿蒙Hardware Compatibility
harmony 鸿蒙Using MindSpore Lite for Model Inference
harmony 鸿蒙Using MindSpore Lite for Offline Model Conversion and Inference
harmony 鸿蒙Using Native APIs in Application Projects
- 所属分类: 后端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦