spark StateSchemaCompatibilityChecker 源码

  • 2022-10-20
  • 浏览 (346)

spark StateSchemaCompatibilityChecker 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/state/StateSchemaCompatibilityChecker.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.state

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path

import org.apache.spark.internal.Logging
import org.apache.spark.sql.execution.streaming.CheckpointFileManager
import org.apache.spark.sql.execution.streaming.state.SchemaHelper.{SchemaReader, SchemaWriter}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{DataType, StructType}

case class StateSchemaNotCompatible(message: String) extends Exception(message)

class StateSchemaCompatibilityChecker(
    providerId: StateStoreProviderId,
    hadoopConf: Configuration) extends Logging {

  private val storeCpLocation = providerId.storeId.storeCheckpointLocation()
  private val fm = CheckpointFileManager.create(storeCpLocation, hadoopConf)
  private val schemaFileLocation = schemaFile(storeCpLocation)
  private val schemaWriter =
    SchemaWriter.createSchemaWriter(StateSchemaCompatibilityChecker.VERSION)

  fm.mkdirs(schemaFileLocation.getParent)

  def check(keySchema: StructType, valueSchema: StructType): Unit = {
    check(keySchema, valueSchema, ignoreValueSchema = false)
  }

  def check(keySchema: StructType, valueSchema: StructType, ignoreValueSchema: Boolean): Unit = {
    if (fm.exists(schemaFileLocation)) {
      logDebug(s"Schema file for provider $providerId exists. Comparing with provided schema.")
      val (storedKeySchema, storedValueSchema) = readSchemaFile()
      if (storedKeySchema.equals(keySchema) &&
        (ignoreValueSchema || storedValueSchema.equals(valueSchema))) {
        // schema is exactly same
      } else if (!schemasCompatible(storedKeySchema, keySchema) ||
        (!ignoreValueSchema && !schemasCompatible(storedValueSchema, valueSchema))) {
        val errorMsgForKeySchema = s"- Provided key schema: $keySchema\n" +
          s"- Existing key schema: $storedKeySchema\n"

        // If it is requested to skip checking the value schema, we also don't expose the value
        // schema information to the error message.
        val errorMsgForValueSchema = if (!ignoreValueSchema) {
          s"- Provided value schema: $valueSchema\n" +
            s"- Existing value schema: $storedValueSchema\n"
        } else {
          ""
        }
        val errorMsg = "Provided schema doesn't match to the schema for existing state! " +
          "Please note that Spark allow difference of field name: check count of fields " +
          "and data type of each field.\n" +
          errorMsgForKeySchema +
          errorMsgForValueSchema +
          s"If you want to force running query without schema validation, please set " +
          s"${SQLConf.STATE_SCHEMA_CHECK_ENABLED.key} to false.\n" +
          "Please note running query with incompatible schema could cause indeterministic" +
          " behavior."
        logError(errorMsg)
        throw StateSchemaNotCompatible(errorMsg)
      } else {
        logInfo("Detected schema change which is compatible. Allowing to put rows.")
      }
    } else {
      // schema doesn't exist, create one now
      logDebug(s"Schema file for provider $providerId doesn't exist. Creating one.")
      createSchemaFile(keySchema, valueSchema)
    }
  }

  private def schemasCompatible(storedSchema: StructType, schema: StructType): Boolean =
    DataType.equalsIgnoreNameAndCompatibleNullability(schema, storedSchema)

  // Visible for testing
  private[sql] def readSchemaFile(): (StructType, StructType) = {
    val inStream = fm.open(schemaFileLocation)
    try {
      val versionStr = inStream.readUTF()
      val schemaReader = SchemaReader.createSchemaReader(versionStr)
      schemaReader.read(inStream)
    } catch {
      case e: Throwable =>
        logError(s"Fail to read schema file from $schemaFileLocation", e)
        throw e
    } finally {
      inStream.close()
    }
  }

  private def createSchemaFile(keySchema: StructType, valueSchema: StructType): Unit = {
    createSchemaFile(keySchema, valueSchema, schemaWriter)
  }

  // Visible for testing
  private[sql] def createSchemaFile(
      keySchema: StructType,
      valueSchema: StructType,
      schemaWriter: SchemaWriter): Unit = {
    val outStream = fm.createAtomic(schemaFileLocation, overwriteIfPossible = false)
    try {
      schemaWriter.write(keySchema, valueSchema, outStream)
      outStream.close()
    } catch {
      case e: Throwable =>
        logError(s"Fail to write schema file to $schemaFileLocation", e)
        outStream.cancel()
        throw e
    }
  }

  private def schemaFile(storeCpLocation: Path): Path =
    new Path(new Path(storeCpLocation, "_metadata"), "schema")
}

object StateSchemaCompatibilityChecker {
  val VERSION = 2
}

相关信息

spark 源码目录

相关文章

spark FlatMapGroupsWithStateExecHelper 源码

spark HDFSBackedStateStoreMap 源码

spark HDFSBackedStateStoreProvider 源码

spark RocksDB 源码

spark RocksDBFileManager 源码

spark RocksDBLoader 源码

spark RocksDBStateEncoder 源码

spark RocksDBStateStoreProvider 源码

spark SchemaHelper 源码

spark StateStore 源码

0  赞