spark SchemaHelper 源码
spark SchemaHelper 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/state/SchemaHelper.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.streaming.state
import java.io.StringReader
import org.apache.hadoop.fs.{FSDataInputStream, FSDataOutputStream}
import org.apache.spark.sql.execution.streaming.MetadataVersionUtil
import org.apache.spark.sql.types.StructType
import org.apache.spark.util.Utils
/**
* Helper classes for reading/writing state schema.
*/
object SchemaHelper {
sealed trait SchemaReader {
def read(inputStream: FSDataInputStream): (StructType, StructType)
}
object SchemaReader {
def createSchemaReader(versionStr: String): SchemaReader = {
val version = MetadataVersionUtil.validateVersion(versionStr,
StateSchemaCompatibilityChecker.VERSION)
version match {
case 1 => new SchemaV1Reader
case 2 => new SchemaV2Reader
}
}
}
class SchemaV1Reader extends SchemaReader {
def read(inputStream: FSDataInputStream): (StructType, StructType) = {
val keySchemaStr = inputStream.readUTF()
val valueSchemaStr = inputStream.readUTF()
(StructType.fromString(keySchemaStr), StructType.fromString(valueSchemaStr))
}
}
class SchemaV2Reader extends SchemaReader {
def read(inputStream: FSDataInputStream): (StructType, StructType) = {
val buf = new StringBuilder
val numKeyChunks = inputStream.readInt()
(0 until numKeyChunks).foreach(_ => buf.append(inputStream.readUTF()))
val keySchemaStr = buf.toString()
buf.clear()
val numValueChunks = inputStream.readInt()
(0 until numValueChunks).foreach(_ => buf.append(inputStream.readUTF()))
val valueSchemaStr = buf.toString()
(StructType.fromString(keySchemaStr), StructType.fromString(valueSchemaStr))
}
}
trait SchemaWriter {
val version: Int
final def write(
keySchema: StructType,
valueSchema: StructType,
outputStream: FSDataOutputStream): Unit = {
writeVersion(outputStream)
writeSchema(keySchema, valueSchema, outputStream)
}
private def writeVersion(outputStream: FSDataOutputStream): Unit = {
outputStream.writeUTF(s"v${version}")
}
protected def writeSchema(
keySchema: StructType,
valueSchema: StructType,
outputStream: FSDataOutputStream): Unit
}
object SchemaWriter {
def createSchemaWriter(version: Int): SchemaWriter = {
version match {
case 1 if Utils.isTesting => new SchemaV1Writer
case 2 => new SchemaV2Writer
}
}
}
class SchemaV1Writer extends SchemaWriter {
val version: Int = 1
def writeSchema(
keySchema: StructType,
valueSchema: StructType,
outputStream: FSDataOutputStream): Unit = {
outputStream.writeUTF(keySchema.json)
outputStream.writeUTF(valueSchema.json)
}
}
class SchemaV2Writer extends SchemaWriter {
val version: Int = 2
// 2^16 - 1 bytes
final val MAX_UTF_CHUNK_SIZE = 65535
def writeSchema(
keySchema: StructType,
valueSchema: StructType,
outputStream: FSDataOutputStream): Unit = {
val buf = new Array[Char](MAX_UTF_CHUNK_SIZE)
// DataOutputStream.writeUTF can't write a string at once
// if the size exceeds 65535 (2^16 - 1) bytes.
// So a key as well as a value consist of multiple chunks in schema version 2.
val keySchemaJson = keySchema.json
val numKeyChunks = (keySchemaJson.length - 1) / MAX_UTF_CHUNK_SIZE + 1
val keyStringReader = new StringReader(keySchemaJson)
outputStream.writeInt(numKeyChunks)
(0 until numKeyChunks).foreach { _ =>
val numRead = keyStringReader.read(buf, 0, MAX_UTF_CHUNK_SIZE)
outputStream.writeUTF(new String(buf, 0, numRead))
}
val valueSchemaJson = valueSchema.json
val numValueChunks = (valueSchemaJson.length - 1) / MAX_UTF_CHUNK_SIZE + 1
val valueStringReader = new StringReader(valueSchemaJson)
outputStream.writeInt(numValueChunks)
(0 until numValueChunks).foreach { _ =>
val numRead = valueStringReader.read(buf, 0, MAX_UTF_CHUNK_SIZE)
outputStream.writeUTF(new String(buf, 0, numRead))
}
}
}
}
相关信息
相关文章
spark FlatMapGroupsWithStateExecHelper 源码
spark HDFSBackedStateStoreMap 源码
spark HDFSBackedStateStoreProvider 源码
spark RocksDBStateStoreProvider 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦