spark ALSExample 源码

  • 2022-10-20
  • 浏览 (331)

spark ALSExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/ALSExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.recommendation.ALS
// $example off$
import org.apache.spark.sql.SparkSession

/**
 * An example demonstrating ALS.
 * Run with
 * {{{
 * bin/run-example ml.ALSExample
 * }}}
 */
object ALSExample {

  // $example on$
  case class Rating(userId: Int, movieId: Int, rating: Float, timestamp: Long)
  def parseRating(str: String): Rating = {
    val fields = str.split("::")
    assert(fields.size == 4)
    Rating(fields(0).toInt, fields(1).toInt, fields(2).toFloat, fields(3).toLong)
  }
  // $example off$

  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("ALSExample")
      .getOrCreate()
    import spark.implicits._

    // $example on$
    val ratings = spark.read.textFile("data/mllib/als/sample_movielens_ratings.txt")
      .map(parseRating)
      .toDF()
    val Array(training, test) = ratings.randomSplit(Array(0.8, 0.2))

    // Build the recommendation model using ALS on the training data
    val als = new ALS()
      .setMaxIter(5)
      .setRegParam(0.01)
      .setUserCol("userId")
      .setItemCol("movieId")
      .setRatingCol("rating")
    val model = als.fit(training)

    // Evaluate the model by computing the RMSE on the test data
    // Note we set cold start strategy to 'drop' to ensure we don't get NaN evaluation metrics
    model.setColdStartStrategy("drop")
    val predictions = model.transform(test)

    val evaluator = new RegressionEvaluator()
      .setMetricName("rmse")
      .setLabelCol("rating")
      .setPredictionCol("prediction")
    val rmse = evaluator.evaluate(predictions)
    println(s"Root-mean-square error = $rmse")

    // Generate top 10 movie recommendations for each user
    val userRecs = model.recommendForAllUsers(10)
    // Generate top 10 user recommendations for each movie
    val movieRecs = model.recommendForAllItems(10)

    // Generate top 10 movie recommendations for a specified set of users
    val users = ratings.select(als.getUserCol).distinct().limit(3)
    val userSubsetRecs = model.recommendForUserSubset(users, 10)
    // Generate top 10 user recommendations for a specified set of movies
    val movies = ratings.select(als.getItemCol).distinct().limit(3)
    val movieSubSetRecs = model.recommendForItemSubset(movies, 10)
    // $example off$
    userRecs.show()
    movieRecs.show()
    userSubsetRecs.show()
    movieSubSetRecs.show()

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

spark DCTExample 源码

0  赞