spark BucketizerExample 源码

  • 2022-10-20
  • 浏览 (308)

spark BucketizerExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/BucketizerExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.feature.Bucketizer
// $example off$
import org.apache.spark.sql.SparkSession
/**
 * An example for Bucketizer.
 * Run with
 * {{{
 * bin/run-example ml.BucketizerExample
 * }}}
 */
object BucketizerExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("BucketizerExample")
      .getOrCreate()

    // $example on$
    val splits = Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity)

    val data = Array(-999.9, -0.5, -0.3, 0.0, 0.2, 999.9)
    val dataFrame = spark.createDataFrame(data.map(Tuple1.apply)).toDF("features")

    val bucketizer = new Bucketizer()
      .setInputCol("features")
      .setOutputCol("bucketedFeatures")
      .setSplits(splits)

    // Transform original data into its bucket index.
    val bucketedData = bucketizer.transform(dataFrame)

    println(s"Bucketizer output with ${bucketizer.getSplits.length-1} buckets")
    bucketedData.show()
    // $example off$

    // $example on$
    val splitsArray = Array(
      Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity),
      Array(Double.NegativeInfinity, -0.3, 0.0, 0.3, Double.PositiveInfinity))

    val data2 = Array(
      (-999.9, -999.9),
      (-0.5, -0.2),
      (-0.3, -0.1),
      (0.0, 0.0),
      (0.2, 0.4),
      (999.9, 999.9))
    val dataFrame2 = spark.createDataFrame(data2).toDF("features1", "features2")

    val bucketizer2 = new Bucketizer()
      .setInputCols(Array("features1", "features2"))
      .setOutputCols(Array("bucketedFeatures1", "bucketedFeatures2"))
      .setSplitsArray(splitsArray)

    // Transform original data into its bucket index.
    val bucketedData2 = bucketizer2.transform(dataFrame2)

    println(s"Bucketizer output with [" +
      s"${bucketizer2.getSplitsArray(0).length-1}, " +
      s"${bucketizer2.getSplitsArray(1).length-1}] buckets for each input column")
    bucketedData2.show()
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

spark DCTExample 源码

0  赞