spark JavaMultilayerPerceptronClassifierExample 源码

  • 2022-10-20
  • 浏览 (697)

spark JavaMultilayerPerceptronClassifierExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
// $example off$

/**
 * An example for Multilayer Perceptron Classification.
 */
public class JavaMultilayerPerceptronClassifierExample {

  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaMultilayerPerceptronClassifierExample")
      .getOrCreate();

    // $example on$
    // Load training data
    String path = "data/mllib/sample_multiclass_classification_data.txt";
    Dataset<Row> dataFrame = spark.read().format("libsvm").load(path);

    // Split the data into train and test
    Dataset<Row>[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
    Dataset<Row> train = splits[0];
    Dataset<Row> test = splits[1];

    // specify layers for the neural network:
    // input layer of size 4 (features), two intermediate of size 5 and 4
    // and output of size 3 (classes)
    int[] layers = new int[] {4, 5, 4, 3};

    // create the trainer and set its parameters
    MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier()
      .setLayers(layers)
      .setBlockSize(128)
      .setSeed(1234L)
      .setMaxIter(100);

    // train the model
    MultilayerPerceptronClassificationModel model = trainer.fit(train);

    // compute accuracy on the test set
    Dataset<Row> result = model.transform(test);
    Dataset<Row> predictionAndLabels = result.select("prediction", "label");
    MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
      .setMetricName("accuracy");

    System.out.println("Test set accuracy = " + evaluator.evaluate(predictionAndLabels));
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞