spark JavaMulticlassLogisticRegressionWithElasticNetExample 源码

  • 2022-10-20
  • 浏览 (261)

spark JavaMulticlassLogisticRegressionWithElasticNetExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaMulticlassLogisticRegressionWithElasticNetExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.classification.LogisticRegressionTrainingSummary;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
// $example off$

public class JavaMulticlassLogisticRegressionWithElasticNetExample {
    public static void main(String[] args) {
        SparkSession spark = SparkSession
                .builder()
                .appName("JavaMulticlassLogisticRegressionWithElasticNetExample")
                .getOrCreate();

        // $example on$
        // Load training data
        Dataset<Row> training = spark.read().format("libsvm")
                .load("data/mllib/sample_multiclass_classification_data.txt");

        LogisticRegression lr = new LogisticRegression()
                .setMaxIter(10)
                .setRegParam(0.3)
                .setElasticNetParam(0.8);

        // Fit the model
        LogisticRegressionModel lrModel = lr.fit(training);

        // Print the coefficients and intercept for multinomial logistic regression
        System.out.println("Coefficients: \n"
                + lrModel.coefficientMatrix() + " \nIntercept: " + lrModel.interceptVector());
        LogisticRegressionTrainingSummary trainingSummary = lrModel.summary();

        // Obtain the loss per iteration.
        double[] objectiveHistory = trainingSummary.objectiveHistory();
        for (double lossPerIteration : objectiveHistory) {
            System.out.println(lossPerIteration);
        }

        // for multiclass, we can inspect metrics on a per-label basis
        System.out.println("False positive rate by label:");
        int i = 0;
        double[] fprLabel = trainingSummary.falsePositiveRateByLabel();
        for (double fpr : fprLabel) {
            System.out.println("label " + i + ": " + fpr);
            i++;
        }

        System.out.println("True positive rate by label:");
        i = 0;
        double[] tprLabel = trainingSummary.truePositiveRateByLabel();
        for (double tpr : tprLabel) {
            System.out.println("label " + i + ": " + tpr);
            i++;
        }

        System.out.println("Precision by label:");
        i = 0;
        double[] precLabel = trainingSummary.precisionByLabel();
        for (double prec : precLabel) {
            System.out.println("label " + i + ": " + prec);
            i++;
        }

        System.out.println("Recall by label:");
        i = 0;
        double[] recLabel = trainingSummary.recallByLabel();
        for (double rec : recLabel) {
            System.out.println("label " + i + ": " + rec);
            i++;
        }

        System.out.println("F-measure by label:");
        i = 0;
        double[] fLabel = trainingSummary.fMeasureByLabel();
        for (double f : fLabel) {
            System.out.println("label " + i + ": " + f);
            i++;
        }

        double accuracy = trainingSummary.accuracy();
        double falsePositiveRate = trainingSummary.weightedFalsePositiveRate();
        double truePositiveRate = trainingSummary.weightedTruePositiveRate();
        double fMeasure = trainingSummary.weightedFMeasure();
        double precision = trainingSummary.weightedPrecision();
        double recall = trainingSummary.weightedRecall();
        System.out.println("Accuracy: " + accuracy);
        System.out.println("FPR: " + falsePositiveRate);
        System.out.println("TPR: " + truePositiveRate);
        System.out.println("F-measure: " + fMeasure);
        System.out.println("Precision: " + precision);
        System.out.println("Recall: " + recall);
        // $example off$

        spark.stop();
    }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞