spark InputInfoTracker 源码

  • 2022-10-20
  • 浏览 (304)

spark InputInfoTracker 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/scheduler/InputInfoTracker.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.scheduler

import scala.collection.mutable

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.internal.Logging
import org.apache.spark.streaming.{StreamingContext, Time}

/**
 * :: DeveloperApi ::
 * Track the information of input stream at specified batch time.
 *
 * @param inputStreamId the input stream id
 * @param numRecords the number of records in a batch
 * @param metadata metadata for this batch. It should contain at least one standard field named
 *                 "Description" which maps to the content that will be shown in the UI.
 */
@DeveloperApi
case class StreamInputInfo(
    inputStreamId: Int, numRecords: Long, metadata: Map[String, Any] = Map.empty) {
  require(numRecords >= 0, "numRecords must not be negative")

  def metadataDescription: Option[String] =
    metadata.get(StreamInputInfo.METADATA_KEY_DESCRIPTION).map(_.toString)
}

@DeveloperApi
object StreamInputInfo {

  /**
   * The key for description in `StreamInputInfo.metadata`.
   */
  val METADATA_KEY_DESCRIPTION: String = "Description"
}

/**
 * This class manages all the input streams as well as their input data statistics. The information
 * will be exposed through StreamingListener for monitoring.
 */
private[streaming] class InputInfoTracker(ssc: StreamingContext) extends Logging {

  // Map to track all the InputInfo related to specific batch time and input stream.
  private val batchTimeToInputInfos =
    new mutable.HashMap[Time, mutable.HashMap[Int, StreamInputInfo]]

  /** Report the input information with batch time to the tracker */
  def reportInfo(batchTime: Time, inputInfo: StreamInputInfo): Unit = synchronized {
    val inputInfos = batchTimeToInputInfos.getOrElseUpdate(batchTime,
      new mutable.HashMap[Int, StreamInputInfo]())

    if (inputInfos.contains(inputInfo.inputStreamId)) {
      throw new IllegalStateException(s"Input stream ${inputInfo.inputStreamId} for batch " +
        s"$batchTime is already added into InputInfoTracker, this is an illegal state")
    }
    inputInfos += ((inputInfo.inputStreamId, inputInfo))
  }

  /** Get the all the input stream's information of specified batch time */
  def getInfo(batchTime: Time): Map[Int, StreamInputInfo] = synchronized {
    val inputInfos = batchTimeToInputInfos.get(batchTime)
    // Convert mutable HashMap to immutable Map for the caller
    inputInfos.map(_.toMap).getOrElse(Map[Int, StreamInputInfo]())
  }

  /** Cleanup the tracked input information older than threshold batch time */
  def cleanup(batchThreshTime: Time): Unit = synchronized {
    val timesToCleanup = batchTimeToInputInfos.keys.filter(_ < batchThreshTime)
    logInfo(s"remove old batch metadata: ${timesToCleanup.mkString(" ")}")
    batchTimeToInputInfos --= timesToCleanup
  }
}

相关信息

spark 源码目录

相关文章

spark BatchInfo 源码

spark ExecutorAllocationManager 源码

spark Job 源码

spark JobGenerator 源码

spark JobScheduler 源码

spark JobSet 源码

spark OutputOperationInfo 源码

spark RateController 源码

spark ReceivedBlockInfo 源码

spark ReceivedBlockTracker 源码

0  赞