spark MesosSchedulerUtils 源码

  • 2022-10-20
  • 浏览 (231)

spark MesosSchedulerUtils 代码

文件路径:/resource-managers/mesos/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosSchedulerUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.scheduler.cluster.mesos

import java.io.File
import java.nio.charset.StandardCharsets
import java.util.{List => JList}
import java.util.concurrent.CountDownLatch

import scala.collection.JavaConverters._
import scala.collection.mutable.ArrayBuffer
import scala.util.control.NonFatal

import com.google.common.base.Splitter
import com.google.common.io.Files
import org.apache.mesos.{MesosSchedulerDriver, Protos, Scheduler, SchedulerDriver}
import org.apache.mesos.Protos.{TaskState => MesosTaskState, _}
import org.apache.mesos.Protos.FrameworkInfo.Capability
import org.apache.mesos.Protos.Resource.ReservationInfo
import org.apache.mesos.protobuf.GeneratedMessageV3

import org.apache.spark.{SparkConf, SparkContext, SparkException}
import org.apache.spark.TaskState
import org.apache.spark.deploy.mesos.{config => mesosConfig, MesosDriverDescription}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.{Status => _, _}
import org.apache.spark.util.Utils

/**
 * Shared trait for implementing a Mesos Scheduler. This holds common state and helper
 * methods and Mesos scheduler will use.
 */
trait MesosSchedulerUtils extends Logging {
  // Lock used to wait for scheduler to be registered
  private final val registerLatch = new CountDownLatch(1)

  private final val ANY_ROLE = "*"

  /**
   * Creates a new MesosSchedulerDriver that communicates to the Mesos master.
   *
   * @param masterUrl The url to connect to Mesos master
   * @param scheduler the scheduler class to receive scheduler callbacks
   * @param sparkUser User to impersonate with when running tasks
   * @param appName The framework name to display on the Mesos UI
   * @param conf Spark configuration
   * @param webuiUrl The WebUI url to link from Mesos UI
   * @param checkpoint Option to checkpoint tasks for failover
   * @param failoverTimeout Duration Mesos master expect scheduler to reconnect on disconnect
   * @param frameworkId The id of the new framework
   */
  protected def createSchedulerDriver(
      masterUrl: String,
      scheduler: Scheduler,
      sparkUser: String,
      appName: String,
      conf: SparkConf,
      webuiUrl: Option[String] = None,
      checkpoint: Option[Boolean] = None,
      failoverTimeout: Option[Double] = None,
      frameworkId: Option[String] = None): SchedulerDriver = {
    val fwInfoBuilder = FrameworkInfo.newBuilder().setUser(sparkUser).setName(appName)
    fwInfoBuilder.setHostname(Option(conf.getenv("SPARK_PUBLIC_DNS")).getOrElse(
      conf.get(DRIVER_HOST_ADDRESS)))
    webuiUrl.foreach { url => fwInfoBuilder.setWebuiUrl(url) }
    checkpoint.foreach { checkpoint => fwInfoBuilder.setCheckpoint(checkpoint) }
    failoverTimeout.foreach { timeout => fwInfoBuilder.setFailoverTimeout(timeout) }
    frameworkId.foreach { id =>
      fwInfoBuilder.setId(FrameworkID.newBuilder().setValue(id).build())
    }

    conf.get(mesosConfig.ROLE).foreach { role =>
      fwInfoBuilder.setRole(role)
    }
    val maxGpus = conf.get(mesosConfig.MAX_GPUS)
    if (maxGpus > 0) {
      fwInfoBuilder.addCapabilities(Capability.newBuilder().setType(Capability.Type.GPU_RESOURCES))
    }
    val credBuilder = buildCredentials(conf, fwInfoBuilder)
    if (credBuilder.hasPrincipal) {
      new MesosSchedulerDriver(
        scheduler, fwInfoBuilder.build(), masterUrl, credBuilder.build())
    } else {
      new MesosSchedulerDriver(scheduler, fwInfoBuilder.build(), masterUrl)
    }
  }

  def buildCredentials(
      conf: SparkConf,
      fwInfoBuilder: Protos.FrameworkInfo.Builder): Protos.Credential.Builder = {
    val credBuilder = Credential.newBuilder()
    conf.get(mesosConfig.CREDENTIAL_PRINCIPAL)
      .orElse(Option(conf.getenv("SPARK_MESOS_PRINCIPAL")))
      .orElse(
        conf.get(mesosConfig.CREDENTIAL_PRINCIPAL_FILE)
          .orElse(Option(conf.getenv("SPARK_MESOS_PRINCIPAL_FILE")))
          .map { principalFile =>
            Files.toString(new File(principalFile), StandardCharsets.UTF_8)
          }
      ).foreach { principal =>
        fwInfoBuilder.setPrincipal(principal)
        credBuilder.setPrincipal(principal)
      }
    conf.get(mesosConfig.CREDENTIAL_SECRET)
      .orElse(Option(conf.getenv("SPARK_MESOS_SECRET")))
      .orElse(
        conf.get(mesosConfig.CREDENTIAL_SECRET_FILE)
         .orElse(Option(conf.getenv("SPARK_MESOS_SECRET_FILE")))
         .map { secretFile =>
           Files.toString(new File(secretFile), StandardCharsets.UTF_8)
         }
      ).foreach { secret =>
        credBuilder.setSecret(secret)
      }
    if (credBuilder.hasSecret && !fwInfoBuilder.hasPrincipal) {
      throw new SparkException(
        s"${mesosConfig.CREDENTIAL_PRINCIPAL} must be configured when " +
          s"${mesosConfig.CREDENTIAL_SECRET} is set")
    }
    credBuilder
  }

  /**
   * Starts the MesosSchedulerDriver and stores the current running driver to this new instance.
   * This driver is expected to not be running.
   * This method returns only after the scheduler has registered with Mesos.
   */
  def startScheduler(newDriver: SchedulerDriver): Unit = {
    synchronized {
      @volatile
      var error: Option[Exception] = None

      // We create a new thread that will block inside `mesosDriver.run`
      // until the scheduler exists
      new Thread(Utils.getFormattedClassName(this) + "-mesos-driver") {
        setDaemon(true)
        override def run(): Unit = {
          try {
            val ret = newDriver.run()
            logInfo("driver.run() returned with code " + ret)
            if (ret != null && ret.equals(Status.DRIVER_ABORTED)) {
              error = Some(new SparkException("Error starting driver, DRIVER_ABORTED"))
              markErr()
            }
          } catch {
            case e: Exception =>
              logError("driver.run() failed", e)
              error = Some(e)
              markErr()
          }
        }
      }.start()

      registerLatch.await()

      // propagate any error to the calling thread. This ensures that SparkContext creation fails
      // without leaving a broken context that won't be able to schedule any tasks
      error.foreach(throw _)
    }
  }

  def getResource(res: JList[Resource], name: String): Double = {
    // A resource can have multiple values in the offer since it can either be from
    // a specific role or wildcard.
    res.asScala.filter(_.getName == name).map(_.getScalar.getValue).sum
  }

  /**
   * Transforms a range resource to a list of ranges
   *
   * @param res the mesos resource list
   * @param name the name of the resource
   * @return the list of ranges returned
   */
  protected def getRangeResource(res: JList[Resource], name: String): List[(Long, Long)] = {
    // A resource can have multiple values in the offer since it can either be from
    // a specific role or wildcard.
    res.asScala.filter(_.getName == name).flatMap(_.getRanges.getRangeList.asScala
      .map(r => (r.getBegin, r.getEnd)).toList).toList
  }

  /**
   * Signal that the scheduler has registered with Mesos.
   */
  protected def markRegistered(): Unit = {
    registerLatch.countDown()
  }

  protected def markErr(): Unit = {
    registerLatch.countDown()
  }

  private def setReservationInfo(
       reservationInfo: Option[ReservationInfo],
       role: Option[String],
       builder: Resource.Builder): Unit = {
    if (!role.contains(ANY_ROLE)) {
      reservationInfo.foreach { res => builder.setReservation(res) }
    }
  }

  def createResource(
       name: String,
       amount: Double,
       role: Option[String] = None,
       reservationInfo: Option[ReservationInfo] = None): Resource = {
    val builder = Resource.newBuilder()
      .setName(name)
      .setType(Value.Type.SCALAR)
      .setScalar(Value.Scalar.newBuilder().setValue(amount).build())
    role.foreach { r => builder.setRole(r) }
    setReservationInfo(reservationInfo, role, builder)
    builder.build()
  }

  private def getReservation(resource: Resource): Option[ReservationInfo] = {
    if (resource.hasReservation) {
      Some(resource.getReservation)
    } else {
      None
    }
  }
  /**
   * Partition the existing set of resources into two groups, those remaining to be
   * scheduled and those requested to be used for a new task.
   *
   * @param resources The full list of available resources
   * @param resourceName The name of the resource to take from the available resources
   * @param amountToUse The amount of resources to take from the available resources
   * @return The remaining resources list and the used resources list.
   */
  def partitionResources(
      resources: JList[Resource],
      resourceName: String,
      amountToUse: Double): (List[Resource], List[Resource]) = {
    var remain = amountToUse
    var requestedResources = new ArrayBuffer[Resource]
    val remainingResources = resources.asScala.map {
      case r =>
        val reservation = getReservation(r)
        if (remain > 0 &&
          r.getType == Value.Type.SCALAR &&
          r.getScalar.getValue > 0.0 &&
          r.getName == resourceName) {
          val usage = Math.min(remain, r.getScalar.getValue)
          requestedResources += createResource(resourceName, usage,
            Option(r.getRole), reservation)
          remain -= usage
          createResource(resourceName, r.getScalar.getValue - usage,
            Option(r.getRole), reservation)
        } else {
          r
        }
    }

    // Filter any resource that has depleted.
    val filteredResources =
      remainingResources.filter(r => r.getType != Value.Type.SCALAR || r.getScalar.getValue > 0.0)

    (filteredResources.toList, requestedResources.toList)
  }

  /** Helper method to get the key,value-set pair for a Mesos Attribute protobuf */
  protected def getAttribute(attr: Attribute): (String, Set[String]) = {
    (attr.getName, attr.getText.getValue.split(',').toSet)
  }

  /**
   * Converts the attributes from the resource offer into a Map of name to Attribute Value
   * The attribute values are the mesos attribute types and they are
   *
   * @param offerAttributes the attributes offered
   */
  protected def toAttributeMap(offerAttributes: JList[Attribute])
    : Map[String, GeneratedMessageV3] = {
    offerAttributes.asScala.map { attr =>
      val attrValue = attr.getType match {
        case Value.Type.SCALAR => attr.getScalar
        case Value.Type.RANGES => attr.getRanges
        case Value.Type.SET => attr.getSet
        case Value.Type.TEXT => attr.getText
      }
      (attr.getName, attrValue)
    }.toMap
  }


  /**
   * Match the requirements (if any) to the offer attributes.
   * if attribute requirements are not specified - return true
   * else if attribute is defined and no values are given, simple attribute presence is performed
   * else if attribute name and value is specified, subset match is performed on agent attributes
   */
  def matchesAttributeRequirements(
      agentOfferConstraints: Map[String, Set[String]],
      offerAttributes: Map[String, GeneratedMessageV3]): Boolean = {
    agentOfferConstraints.forall {
      // offer has the required attribute and subsumes the required values for that attribute
      case (name, requiredValues) =>
        offerAttributes.get(name) match {
          case Some(_) if requiredValues.isEmpty => true // empty value matches presence
          case Some(scalarValue: Value.Scalar) =>
            // check if provided values is less than equal to the offered values
            requiredValues.map(_.toDouble).exists(_ <= scalarValue.getValue)
          case Some(rangeValue: Value.Range) =>
            val offerRange = rangeValue.getBegin to rangeValue.getEnd
            // Check if there is some required value that is between the ranges specified
            // Note: We only support the ability to specify discrete values, in the future
            // we may expand it to subsume ranges specified with a XX..YY value or something
            // similar to that.
            requiredValues.map(_.toLong).exists(offerRange.contains(_))
          case Some(offeredValue: Value.Set) =>
            // check if the specified required values is a subset of offered set
            requiredValues.subsetOf(offeredValue.getItemList.asScala.toSet)
          case Some(textValue: Value.Text) =>
            // check if the specified value is equal, if multiple values are specified
            // we succeed if any of them match.
            requiredValues.contains(textValue.getValue)
          case _ => false
        }
    }
  }

  /**
   * Parses the attributes constraints provided to spark and build a matching data struct:
   *  {@literal Map[<attribute-name>, Set[values-to-match]}
   *  The constraints are specified as ';' separated key-value pairs where keys and values
   *  are separated by ':'. The ':' implies equality (for singular values) and "is one of" for
   *  multiple values (comma separated). For example:
   *  {{{
   *  parseConstraintString("os:centos7;zone:us-east-1a,us-east-1b")
   *  // would result in
   *  <code>
   *  Map(
   *    "os" -> Set("centos7"),
   *    "zone":   -> Set("us-east-1a", "us-east-1b")
   *  )
   *  }}}
   *
   *  Mesos documentation: http://mesos.apache.org/documentation/attributes-resources/
   *                       https://github.com/apache/mesos/blob/master/src/common/values.cpp
   *                       https://github.com/apache/mesos/blob/master/src/common/attributes.cpp
   *
   * @param constraintsVal contains string consisting of ';' separated key-value pairs (separated
   *                       by ':')
   * @return  Map of constraints to match resources offers.
   */
  def parseConstraintString(constraintsVal: String): Map[String, Set[String]] = {
    /*
      Based on mesos docs:
      attributes : attribute ( ";" attribute )*
      attribute : labelString ":" ( labelString | "," )+
      labelString : [a-zA-Z0-9_/.-]
    */
    val splitter = Splitter.on(';').trimResults().withKeyValueSeparator(':')
    // kv splitter
    if (constraintsVal.isEmpty) {
      Map()
    } else {
      try {
        splitter.split(constraintsVal).asScala.toMap.mapValues(v =>
          if (v == null || v.isEmpty) {
            Set.empty[String]
          } else {
            v.split(',').toSet
          }
        ).toMap
      } catch {
        case NonFatal(e) =>
          throw new IllegalArgumentException(s"Bad constraint string: $constraintsVal", e)
      }
    }
  }

  // This default copied from YARN
  private val MEMORY_OVERHEAD_MINIMUM = 384

  /**
   * Return the amount of memory to allocate to each executor, taking into account
   * container overheads.
   *
   * @param sc SparkContext to use to get `spark.mesos.executor.memoryOverhead` value
   * @return memory requirement as (0.1 * memoryOverhead) or MEMORY_OVERHEAD_MINIMUM
   *         (whichever is larger)
   */
  def executorMemory(sc: SparkContext): Int = {
    val memoryOverheadFactor = sc.conf.get(EXECUTOR_MEMORY_OVERHEAD_FACTOR)
    sc.conf.get(mesosConfig.EXECUTOR_MEMORY_OVERHEAD).getOrElse(
      math.max(memoryOverheadFactor * sc.executorMemory, MEMORY_OVERHEAD_MINIMUM).toInt) +
      sc.executorMemory
  }

  /**
   * Return the amount of memory to allocate to each driver, taking into account
   * container overheads.
   *
   * @param driverDesc used to get driver memory
   * @return memory requirement defined as `DRIVER_MEMORY_OVERHEAD` if set in the config,
   *         otherwise the larger of `MEMORY_OVERHEAD_MINIMUM (=384MB)` or
   *         `MEMORY_OVERHEAD_FRACTION (=0.1) * driverMemory`
   */
  def driverContainerMemory(driverDesc: MesosDriverDescription): Int = {
    val memoryOverheadFactor = driverDesc.conf.get(DRIVER_MEMORY_OVERHEAD_FACTOR)
    val defaultMem = math.max(memoryOverheadFactor * driverDesc.mem, MEMORY_OVERHEAD_MINIMUM)
    driverDesc.conf.get(mesosConfig.DRIVER_MEMORY_OVERHEAD).getOrElse(defaultMem.toInt) +
      driverDesc.mem
  }

  def setupUris(uris: Seq[String],
                builder: CommandInfo.Builder,
                useFetcherCache: Boolean = false): Unit = {
    uris.foreach { uri =>
      builder.addUris(CommandInfo.URI.newBuilder().setValue(uri.trim()).setCache(useFetcherCache))
    }
  }

  protected def getRejectOfferDuration(conf: SparkConf): Long = {
    conf.get(mesosConfig.REJECT_OFFER_DURATION)
  }

  protected def getRejectOfferDurationForUnmetConstraints(conf: SparkConf): Long = {
    conf.get(mesosConfig.REJECT_OFFER_DURATION_FOR_UNMET_CONSTRAINTS)
      .getOrElse(getRejectOfferDuration(conf))
  }

  protected def getRejectOfferDurationForReachedMaxCores(conf: SparkConf): Long = {
    conf.get(mesosConfig.REJECT_OFFER_DURATION_FOR_REACHED_MAX_CORES)
      .getOrElse(getRejectOfferDuration(conf))
  }

  /**
   * Checks executor ports if they are within some range of the offered list of ports ranges,
   *
   * @param conf the Spark Config
   * @param ports the list of ports to check
   * @return true if ports are within range false otherwise
   */
  protected def checkPorts(conf: SparkConf, ports: List[(Long, Long)]): Boolean = {

    def checkIfInRange(port: Long, ps: List[(Long, Long)]): Boolean = {
      ps.exists{case (rangeStart, rangeEnd) => rangeStart <= port & rangeEnd >= port }
    }

    val portsToCheck = nonZeroPortValuesFromConfig(conf)
    val withinRange = portsToCheck.forall(p => checkIfInRange(p, ports))
    // make sure we have enough ports to allocate per offer
    val enoughPorts =
    ports.map{case (rangeStart, rangeEnd) => rangeEnd - rangeStart + 1}.sum >= portsToCheck.size
    enoughPorts && withinRange
  }

  /**
   * Partitions port resources.
   *
   * @param requestedPorts non-zero ports to assign
   * @param offeredResources the resources offered
   * @return resources left, port resources to be used.
   */
  def partitionPortResources(requestedPorts: List[Long], offeredResources: List[Resource])
    : (List[Resource], List[Resource]) = {
    if (requestedPorts.isEmpty) {
      (offeredResources, List[Resource]())
    } else {
      // partition port offers
      val (resourcesWithoutPorts, portResources) = filterPortResources(offeredResources)

      val portsAndResourceInfo = requestedPorts.
        map { x => (x, findPortAndGetAssignedResourceInfo(x, portResources)) }

      val assignedPortResources = createResourcesFromPorts(portsAndResourceInfo)

      // ignore non-assigned port resources, they will be declined implicitly by mesos
      // no need for splitting port resources.
      (resourcesWithoutPorts, assignedPortResources)
    }
  }

  val managedPortNames = List(BLOCK_MANAGER_PORT.key)

  /**
   * The values of the non-zero ports to be used by the executor process.
 *
   * @param conf the spark config to use
   * @return the ono-zero values of the ports
   */
  def nonZeroPortValuesFromConfig(conf: SparkConf): List[Long] = {
    managedPortNames.map(conf.getLong(_, 0)).filter( _ != 0)
  }

  private case class RoleResourceInfo(
      role: String,
      resInfo: Option[ReservationInfo])

  /** Creates a mesos resource for a specific port number. */
  private def createResourcesFromPorts(
      portsAndResourcesInfo: List[(Long, RoleResourceInfo)])
    : List[Resource] = {
    portsAndResourcesInfo.flatMap { case (port, rInfo) =>
      createMesosPortResource(List((port, port)), Option(rInfo.role), rInfo.resInfo)}
  }

  /** Helper to create mesos resources for specific port ranges. */
  private def createMesosPortResource(
      ranges: List[(Long, Long)],
      role: Option[String] = None,
      reservationInfo: Option[ReservationInfo] = None): List[Resource] = {
    // for ranges we are going to use (user defined ports fall in there) create mesos resources
    // for each range there is a role associated with it.
    ranges.map { case (rangeStart, rangeEnd) =>
      val rangeValue = Value.Range.newBuilder()
        .setBegin(rangeStart)
        .setEnd(rangeEnd)
      val builder = Resource.newBuilder()
        .setName("ports")
        .setType(Value.Type.RANGES)
        .setRanges(Value.Ranges.newBuilder().addRange(rangeValue))
      role.foreach { r => builder.setRole(r) }
      setReservationInfo(reservationInfo, role, builder)
      builder.build()
    }
  }

 /**
  * Helper to assign a port to an offered range and get the latter's role
  * info to use it later on.
  */
  private def findPortAndGetAssignedResourceInfo(port: Long, portResources: List[Resource])
    : RoleResourceInfo = {

    val ranges = portResources.
      map { resource =>
        val reservation = getReservation(resource)
        (RoleResourceInfo(resource.getRole, reservation),
          resource.getRanges.getRangeList.asScala.map(r => (r.getBegin, r.getEnd)).toList)
      }

    val rangePortResourceInfo = ranges
      .find { case (resourceInfo, rangeList) => rangeList
        .exists{ case (rangeStart, rangeEnd) => rangeStart <= port & rangeEnd >= port}}
    // this is safe since we have previously checked about the ranges (see checkPorts method)
    rangePortResourceInfo.map{ case (resourceInfo, rangeList) => resourceInfo}.get
  }

  /** Retrieves the port resources from a list of mesos offered resources */
  private def filterPortResources(resources: List[Resource]): (List[Resource], List[Resource]) = {
    resources.partition { r => !(r.getType == Value.Type.RANGES && r.getName == "ports") }
  }

  /**
   * spark.mesos.driver.frameworkId is set by the cluster dispatcher to correlate driver
   * submissions with frameworkIDs.  However, this causes issues when a driver process launches
   * more than one framework (more than one SparkContext(, because they all try to register with
   * the same frameworkID.  To enforce that only the first driver registers with the configured
   * framework ID, the driver calls this method after the first registration.
   */
  def unsetFrameworkID(sc: SparkContext): Unit = {
    sc.conf.remove(mesosConfig.DRIVER_FRAMEWORK_ID)
    System.clearProperty(mesosConfig.DRIVER_FRAMEWORK_ID.key)
  }

  def mesosToTaskState(state: MesosTaskState): TaskState.TaskState = state match {
    case MesosTaskState.TASK_STAGING |
         MesosTaskState.TASK_STARTING => TaskState.LAUNCHING
    case MesosTaskState.TASK_RUNNING |
         MesosTaskState.TASK_KILLING => TaskState.RUNNING
    case MesosTaskState.TASK_FINISHED => TaskState.FINISHED
    case MesosTaskState.TASK_FAILED |
         MesosTaskState.TASK_GONE |
         MesosTaskState.TASK_GONE_BY_OPERATOR => TaskState.FAILED
    case MesosTaskState.TASK_KILLED => TaskState.KILLED
    case MesosTaskState.TASK_LOST |
         MesosTaskState.TASK_ERROR |
         MesosTaskState.TASK_DROPPED |
         MesosTaskState.TASK_UNKNOWN |
         MesosTaskState.TASK_UNREACHABLE => TaskState.LOST
  }

  protected def declineOffer(
    driver: org.apache.mesos.SchedulerDriver,
    offer: Offer,
    reason: Option[String] = None,
    refuseSeconds: Option[Long] = None): Unit = {

    val id = offer.getId.getValue
    val offerAttributes = toAttributeMap(offer.getAttributesList)
    val mem = getResource(offer.getResourcesList, "mem")
    val cpus = getResource(offer.getResourcesList, "cpus")
    val ports = getRangeResource(offer.getResourcesList, "ports")

    logDebug(s"Declining offer: $id with " +
      s"attributes: $offerAttributes " +
      s"mem: $mem " +
      s"cpu: $cpus " +
      s"port: $ports " +
      refuseSeconds.map(s => s"for ${s} seconds ").getOrElse("") +
      reason.map(r => s" (reason: $r)").getOrElse(""))

    refuseSeconds match {
      case Some(seconds) =>
        val filters = Filters.newBuilder().setRefuseSeconds(seconds).build()
        driver.declineOffer(offer.getId, filters)
      case _ =>
        driver.declineOffer(offer.getId)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark MesosClusterManager 源码

spark MesosClusterPersistenceEngine 源码

spark MesosClusterScheduler 源码

spark MesosClusterSchedulerSource 源码

spark MesosCoarseGrainedSchedulerBackend 源码

spark MesosFineGrainedSchedulerBackend 源码

spark MesosProtoUtils 源码

spark MesosScheduler 源码

spark MesosSchedulerBackendUtil 源码

0  赞