spark MesosFineGrainedSchedulerBackend 源码

  • 2022-10-20
  • 浏览 (220)

spark MesosFineGrainedSchedulerBackend 代码

文件路径:/resource-managers/mesos/src/main/scala/org/apache/spark/scheduler/cluster/mesos/MesosFineGrainedSchedulerBackend.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.scheduler.cluster.mesos

import java.io.File
import java.util.{ArrayList => JArrayList, Collections, List => JList}

import scala.collection.JavaConverters._
import scala.collection.mutable.{HashMap, HashSet}

import org.apache.mesos.Protos.{ExecutorInfo => MesosExecutorInfo, SlaveID => AgentID,
  TaskInfo => MesosTaskInfo, _}
import org.apache.mesos.SchedulerDriver
import org.apache.mesos.protobuf.ByteString

import org.apache.spark.{SparkContext, SparkException, TaskState}
import org.apache.spark.deploy.mesos.{config => mesosConfig}
import org.apache.spark.executor.MesosExecutorBackend
import org.apache.spark.internal.config
import org.apache.spark.resource.ResourceProfile
import org.apache.spark.scheduler._
import org.apache.spark.scheduler.cluster.ExecutorInfo
import org.apache.spark.util.Utils

/**
 * A SchedulerBackend for running fine-grained tasks on Mesos. Each Spark task is mapped to a
 * separate Mesos task, allowing multiple applications to share cluster nodes both in space (tasks
 * from multiple apps can run on different cores) and in time (a core can switch ownership).
 */
private[spark] class MesosFineGrainedSchedulerBackend(
    scheduler: TaskSchedulerImpl,
    sc: SparkContext,
    master: String)
  extends SchedulerBackend
  with MesosScheduler
  with MesosSchedulerUtils {

  // Stores the agent ids that has launched a Mesos executor.
  val agentIdToExecutorInfo = new HashMap[String, MesosExecutorInfo]
  val taskIdToAgentId = new HashMap[Long, String]

  // An ExecutorInfo for our tasks
  var execArgs: Array[Byte] = null

  var classLoader: ClassLoader = null

  // The listener bus to publish executor added/removed events.
  val listenerBus = sc.listenerBus

  private[mesos] val mesosExecutorCores = sc.conf.get(mesosConfig.EXECUTOR_CORES)

  // Offer constraints
  private[this] val agentOfferConstraints =
    parseConstraintString(sc.conf.get(mesosConfig.CONSTRAINTS))

  // reject offers with mismatched constraints in seconds
  private val rejectOfferDurationForUnmetConstraints =
    getRejectOfferDurationForUnmetConstraints(sc.conf)

  private var schedulerDriver: SchedulerDriver = _

  @volatile var appId: String = _

  override def start(): Unit = {
    classLoader = Thread.currentThread.getContextClassLoader
    val driver = createSchedulerDriver(
      master,
      MesosFineGrainedSchedulerBackend.this,
      sc.sparkUser,
      sc.appName,
      sc.conf,
      sc.conf.get(mesosConfig.DRIVER_WEBUI_URL).orElse(sc.ui.map(_.webUrl)),
      Option.empty,
      Option.empty,
      sc.conf.get(mesosConfig.DRIVER_FRAMEWORK_ID)
    )

    unsetFrameworkID(sc)
    startScheduler(driver)
  }

  /**
   * Creates a MesosExecutorInfo that is used to launch a Mesos executor.
 *
   * @param availableResources Available resources that is offered by Mesos
   * @param execId The executor id to assign to this new executor.
   * @return A tuple of the new mesos executor info and the remaining available resources.
   */
  def createExecutorInfo(
      availableResources: JList[Resource],
      execId: String): (MesosExecutorInfo, JList[Resource]) = {
    val executorSparkHome = sc.conf.get(mesosConfig.EXECUTOR_HOME)
      .orElse(sc.getSparkHome()) // Fall back to driver Spark home for backward compatibility
      .getOrElse {
      throw new SparkException(s"Executor Spark home `${mesosConfig.EXECUTOR_HOME}` is not set!")
    }
    val environment = Environment.newBuilder()
    sc.conf.get(config.EXECUTOR_CLASS_PATH).foreach { cp =>
      environment.addVariables(
        Environment.Variable.newBuilder().setName("SPARK_EXECUTOR_CLASSPATH").setValue(cp).build())
    }
    val extraJavaOpts = sc.conf.get(config.EXECUTOR_JAVA_OPTIONS).map {
      Utils.substituteAppNExecIds(_, appId, execId)
    }.getOrElse("")

    val prefixEnv = sc.conf.get(config.EXECUTOR_LIBRARY_PATH).map { p =>
      Utils.libraryPathEnvPrefix(Seq(p))
    }.getOrElse("")

    environment.addVariables(
      Environment.Variable.newBuilder()
        .setName("SPARK_EXECUTOR_OPTS")
        .setValue(extraJavaOpts)
        .build())
    sc.executorEnvs.foreach { case (key, value) =>
      environment.addVariables(Environment.Variable.newBuilder()
        .setName(key)
        .setValue(value)
        .build())
    }
    val command = CommandInfo.newBuilder()
      .setEnvironment(environment)
    val uri = sc.conf.get(mesosConfig.EXECUTOR_URI)
      .orElse(Option(System.getenv("SPARK_EXECUTOR_URI")))

    val executorBackendName = classOf[MesosExecutorBackend].getName
    if (uri.isEmpty) {
      val executorPath = new File(executorSparkHome, "/bin/spark-class").getPath
      command.setValue(s"$prefixEnv $executorPath $executorBackendName")
    } else {
      // Grab everything to the first '.'. We'll use that and '*' to
      // glob the directory "correctly".
      val basename = uri.get.split('/').last.split('.').head
      command.setValue(s"cd ${basename}*; $prefixEnv ./bin/spark-class $executorBackendName")
      command.addUris(CommandInfo.URI.newBuilder().setValue(uri.get))
    }
    val builder = MesosExecutorInfo.newBuilder()
    val (resourcesAfterCpu, usedCpuResources) =
      partitionResources(availableResources, "cpus", mesosExecutorCores)
    val (resourcesAfterMem, usedMemResources) =
      partitionResources(resourcesAfterCpu.asJava, "mem", executorMemory(sc))

    builder.addAllResources(usedCpuResources.asJava)
    builder.addAllResources(usedMemResources.asJava)

    setupUris(sc.conf.get(mesosConfig.URIS_TO_DOWNLOAD), command)

    val executorInfo = builder
      .setExecutorId(ExecutorID.newBuilder().setValue(execId).build())
      .setCommand(command)
      .setData(ByteString.copyFrom(createExecArg()))

    executorInfo.setContainer(
      MesosSchedulerBackendUtil.buildContainerInfo(sc.conf))
    (executorInfo.build(), resourcesAfterMem.asJava)
  }

  /**
   * Create and serialize the executor argument to pass to Mesos. Our executor arg is an array
   * containing all the spark.* system properties in the form of (String, String) pairs.
   */
  private def createExecArg(): Array[Byte] = {
    if (execArgs == null) {
      val props = new HashMap[String, String]
      for ((key, value) <- sc.conf.getAll) {
        props(key) = value
      }
      // Serialize the map as an array of (String, String) pairs
      execArgs = Utils.serialize(props.toArray)
    }
    execArgs
  }

  override def offerRescinded(d: org.apache.mesos.SchedulerDriver, o: OfferID): Unit = {}

  override def registered(
      driver: org.apache.mesos.SchedulerDriver,
      frameworkId: FrameworkID,
      masterInfo: MasterInfo): Unit = {
    inClassLoader() {
      appId = frameworkId.getValue
      logInfo("Registered as framework ID " + appId)
      this.schedulerDriver = driver
      markRegistered()
    }
  }

  private def inClassLoader()(fun: => Unit) = {
    val oldClassLoader = Thread.currentThread.getContextClassLoader
    Thread.currentThread.setContextClassLoader(classLoader)
    try {
      fun
    } finally {
      Thread.currentThread.setContextClassLoader(oldClassLoader)
    }
  }

  override def disconnected(d: org.apache.mesos.SchedulerDriver): Unit = {}

  override def reregistered(d: org.apache.mesos.SchedulerDriver, masterInfo: MasterInfo): Unit = {}

  private def getTasksSummary(tasks: JArrayList[MesosTaskInfo]): String = {
    val builder = new StringBuilder
    tasks.asScala.foreach { t =>
      builder.append("Task id: ").append(t.getTaskId.getValue).append("\n")
        .append("Agent id: ").append(t.getSlaveId.getValue).append("\n")
        .append("Task resources: ").append(t.getResourcesList).append("\n")
        .append("Executor resources: ").append(t.getExecutor.getResourcesList)
        .append("---------------------------------------------\n")
    }
    builder.toString()
  }

  /**
   * Method called by Mesos to offer resources on agents. We respond by asking our active task sets
   * for tasks in order of priority. We fill each node with tasks in a round-robin manner so that
   * tasks are balanced across the cluster.
   */
  override def resourceOffers(d: org.apache.mesos.SchedulerDriver, offers: JList[Offer]): Unit = {
    inClassLoader() {
      // Fail first on offers with unmet constraints
      val (offersMatchingConstraints, offersNotMatchingConstraints) =
        offers.asScala.partition { o =>
          val offerAttributes = toAttributeMap(o.getAttributesList)
          val meetsConstraints =
            matchesAttributeRequirements(agentOfferConstraints, offerAttributes)

          // add some debug messaging
          if (!meetsConstraints) {
            val id = o.getId.getValue
            logDebug(s"Declining offer: $id with attributes: $offerAttributes")
          }

          meetsConstraints
        }

      // These offers do not meet constraints. We don't need to see them again.
      // Decline the offer for a long period of time.
      offersNotMatchingConstraints.foreach { o =>
        d.declineOffer(o.getId, Filters.newBuilder()
          .setRefuseSeconds(rejectOfferDurationForUnmetConstraints).build())
      }

      // Of the matching constraints, see which ones give us enough memory and cores
      val (usableOffers, unUsableOffers) = offersMatchingConstraints.partition { o =>
        val mem = getResource(o.getResourcesList, "mem")
        val cpus = getResource(o.getResourcesList, "cpus")
        val agentId = o.getSlaveId.getValue
        val offerAttributes = toAttributeMap(o.getAttributesList)

        // check offers for
        //  1. Memory requirements
        //  2. CPU requirements - need at least 1 for executor, 1 for task
        val meetsMemoryRequirements = mem >= executorMemory(sc)
        val meetsCPURequirements = cpus >= (mesosExecutorCores + scheduler.CPUS_PER_TASK)
        val meetsRequirements =
          (meetsMemoryRequirements && meetsCPURequirements) ||
          (agentIdToExecutorInfo.contains(agentId) && cpus >= scheduler.CPUS_PER_TASK)
        val debugstr = if (meetsRequirements) "Accepting" else "Declining"
        logDebug(s"$debugstr offer: ${o.getId.getValue} with attributes: "
          + s"$offerAttributes mem: $mem cpu: $cpus")

        meetsRequirements
      }

      // Decline offers we ruled out immediately
      unUsableOffers.foreach(o => d.declineOffer(o.getId))

      val workerOffers = usableOffers.map { o =>
        val cpus = if (agentIdToExecutorInfo.contains(o.getSlaveId.getValue)) {
          getResource(o.getResourcesList, "cpus").toInt
        } else {
          // If the Mesos executor has not been started on this agent yet, set aside a few
          // cores for the Mesos executor by offering fewer cores to the Spark executor
          (getResource(o.getResourcesList, "cpus") - mesosExecutorCores).toInt
        }
        new WorkerOffer(
          o.getSlaveId.getValue,
          o.getHostname,
          cpus)
      }.toIndexedSeq

      val agentIdToOffer = usableOffers.map(o => o.getSlaveId.getValue -> o).toMap
      val agentIdToWorkerOffer = workerOffers.map(o => o.executorId -> o).toMap
      val agentIdToResources = new HashMap[String, JList[Resource]]()
      usableOffers.foreach { o =>
        agentIdToResources(o.getSlaveId.getValue) = o.getResourcesList
      }

      val mesosTasks = new HashMap[String, JArrayList[MesosTaskInfo]]

      val agentsIdsOfAcceptedOffers = HashSet[String]()

      // Call into the TaskSchedulerImpl
      val acceptedOffers = scheduler.resourceOffers(workerOffers).filter(!_.isEmpty)
      acceptedOffers
        .foreach { offer =>
          offer.foreach { taskDesc =>
            val agentId = taskDesc.executorId
            agentsIdsOfAcceptedOffers += agentId
            taskIdToAgentId(taskDesc.taskId) = agentId
            val (mesosTask, remainingResources) = createMesosTask(
              taskDesc,
              agentIdToResources(agentId),
              agentId)
            mesosTasks.getOrElseUpdate(agentId, new JArrayList[MesosTaskInfo])
              .add(mesosTask)
            agentIdToResources(agentId) = remainingResources
          }
        }

      // Reply to the offers
      val filters = Filters.newBuilder().setRefuseSeconds(1).build() // TODO: lower timeout?

      mesosTasks.foreach { case (agentId, tasks) =>
        agentIdToWorkerOffer.get(agentId).foreach(o =>
          listenerBus.post(SparkListenerExecutorAdded(System.currentTimeMillis(), agentId,
            // TODO: Add support for log urls for Mesos
            new ExecutorInfo(o.host, o.cores, Map.empty, Map.empty)))
        )
        logTrace(s"Launching Mesos tasks on agent '$agentId', tasks:\n${getTasksSummary(tasks)}")
        d.launchTasks(Collections.singleton(agentIdToOffer(agentId).getId), tasks, filters)
      }

      // Decline offers that weren't used
      // NOTE: This logic assumes that we only get a single offer for each host in a given batch
      for (o <- usableOffers if !agentsIdsOfAcceptedOffers.contains(o.getSlaveId.getValue)) {
        d.declineOffer(o.getId)
      }
    }
  }

  /** Turn a Spark TaskDescription into a Mesos task and also resources unused by the task */
  def createMesosTask(
      task: TaskDescription,
      resources: JList[Resource],
      agentId: String): (MesosTaskInfo, JList[Resource]) = {
    val taskId = TaskID.newBuilder().setValue(task.taskId.toString).build()
    val (executorInfo, remainingResources) = if (agentIdToExecutorInfo.contains(agentId)) {
      (agentIdToExecutorInfo(agentId), resources)
    } else {
      createExecutorInfo(resources, agentId)
    }
    agentIdToExecutorInfo(agentId) = executorInfo
    val (finalResources, cpuResources) =
      partitionResources(remainingResources, "cpus", scheduler.CPUS_PER_TASK)
    val taskInfo = MesosTaskInfo.newBuilder()
      .setTaskId(taskId)
      .setSlaveId(AgentID.newBuilder().setValue(agentId).build())
      .setExecutor(executorInfo)
      .setName(task.name)
      .addAllResources(cpuResources.asJava)
      .setData(ByteString.copyFrom(TaskDescription.encode(task)))
      .build()
    (taskInfo, finalResources.asJava)
  }

  override def statusUpdate(d: org.apache.mesos.SchedulerDriver, status: TaskStatus): Unit = {
    inClassLoader() {
      val tid = status.getTaskId.getValue.toLong
      val state = mesosToTaskState(status.getState)
      synchronized {
        if (TaskState.isFailed(mesosToTaskState(status.getState))
          && taskIdToAgentId.contains(tid)) {
          // We lost the executor on this agent, so remember that it's gone
          removeExecutor(taskIdToAgentId(tid), "Lost executor")
        }
        if (TaskState.isFinished(state)) {
          taskIdToAgentId.remove(tid)
        }
      }
      scheduler.statusUpdate(tid, state, status.getData.asReadOnlyByteBuffer)
    }
  }

  override def error(d: org.apache.mesos.SchedulerDriver, message: String): Unit = {
    inClassLoader() {
      logError("Mesos error: " + message)
      markErr()
      scheduler.error(message)
    }
  }

  override def stop(): Unit = {
    if (schedulerDriver != null) {
      schedulerDriver.stop()
    }
  }

  override def reviveOffers(): Unit = {
    schedulerDriver.reviveOffers()
  }

  override def frameworkMessage(
      d: org.apache.mesos.SchedulerDriver, e: ExecutorID, s: AgentID, b: Array[Byte]): Unit = {}

  /**
   * Remove executor associated with agentId in a thread safe manner.
   */
  private def removeExecutor(agentId: String, reason: String) = {
    synchronized {
      listenerBus.post(SparkListenerExecutorRemoved(System.currentTimeMillis(), agentId, reason))
      agentIdToExecutorInfo -= agentId
    }
  }

  private def recordAgentLost(agentId: AgentID, reason: ExecutorLossReason): Unit = {
    inClassLoader() {
      logInfo("Mesos agent lost: " + agentId.getValue)
      removeExecutor(agentId.getValue, reason.toString)
      scheduler.executorLost(agentId.getValue, reason)
    }
  }

  override def agentLost(d: org.apache.mesos.SchedulerDriver, agentId: AgentID): Unit = {
    recordAgentLost(agentId, ExecutorProcessLost())
  }

  override def executorLost(
      d: org.apache.mesos.SchedulerDriver,
      executorId: ExecutorID,
      agentId: AgentID,
      status: Int): Unit = {
    logInfo("Executor lost: %s, marking agent %s as lost".format(executorId.getValue,
                                                                 agentId.getValue))
    recordAgentLost(agentId, ExecutorExited(status, exitCausedByApp = true))
  }

  override def killTask(
      taskId: Long, executorId: String, interruptThread: Boolean, reason: String): Unit = {
    schedulerDriver.killTask(
      TaskID.newBuilder()
        .setValue(taskId.toString).build()
    )
  }

  // TODO: query Mesos for number of cores
  override def defaultParallelism(): Int = sc.conf.getInt("spark.default.parallelism", 8)

  override def applicationId(): String =
    Option(appId).getOrElse {
      logWarning("Application ID is not initialized yet.")
      super.applicationId
    }

  override def maxNumConcurrentTasks(rp: ResourceProfile): Int = {
    // TODO SPARK-25074 support this method for MesosFineGrainedSchedulerBackend
    0
  }
}

相关信息

spark 源码目录

相关文章

spark MesosClusterManager 源码

spark MesosClusterPersistenceEngine 源码

spark MesosClusterScheduler 源码

spark MesosClusterSchedulerSource 源码

spark MesosCoarseGrainedSchedulerBackend 源码

spark MesosProtoUtils 源码

spark MesosScheduler 源码

spark MesosSchedulerBackendUtil 源码

spark MesosSchedulerUtils 源码

0  赞