spark NaiveBayesExample 源码

  • 2022-10-20
  • 浏览 (226)

spark NaiveBayesExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/NaiveBayesExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
// $example off$
import org.apache.spark.sql.SparkSession

object NaiveBayesExample {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("NaiveBayesExample")
      .getOrCreate()

    // $example on$
    // Load the data stored in LIBSVM format as a DataFrame.
    val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

    // Split the data into training and test sets (30% held out for testing)
    val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3), seed = 1234L)

    // Train a NaiveBayes model.
    val model = new NaiveBayes()
      .fit(trainingData)

    // Select example rows to display.
    val predictions = model.transform(testData)
    predictions.show()

    // Select (prediction, true label) and compute test error
    val evaluator = new MulticlassClassificationEvaluator()
      .setLabelCol("label")
      .setPredictionCol("prediction")
      .setMetricName("accuracy")
    val accuracy = evaluator.evaluate(predictions)
    println(s"Test set accuracy = $accuracy")
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞