spark ObjectHashAggregateExec 源码
spark ObjectHashAggregateExec 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/ObjectHashAggregateExec.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.aggregate
import java.util.concurrent.TimeUnit._
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.metric.SQLMetrics
/**
* A hash-based aggregate operator that supports [[TypedImperativeAggregate]] functions that may
* use arbitrary JVM objects as aggregation states.
*
* Similar to [[HashAggregateExec]], this operator also falls back to sort-based aggregation when
* the size of the internal hash map exceeds the threshold. The differences are:
*
* - It uses safe rows as aggregation buffer since it must support JVM objects as aggregation
* states.
*
* - It tracks entry count of the hash map instead of byte size to decide when we should fall back.
* This is because it's hard to estimate the accurate size of arbitrary JVM objects in a
* lightweight way.
*
* - Whenever fallen back to sort-based aggregation, this operator feeds all of the rest input rows
* into external sorters instead of building more hash map(s) as what [[HashAggregateExec]] does.
* This is because having too many JVM object aggregation states floating there can be dangerous
* for GC.
*
* - CodeGen is not supported yet.
*
* This operator may be turned off by setting the following SQL configuration to `false`:
* {{{
* spark.sql.execution.useObjectHashAggregateExec
* }}}
* The fallback threshold can be configured by tuning:
* {{{
* spark.sql.objectHashAggregate.sortBased.fallbackThreshold
* }}}
*/
case class ObjectHashAggregateExec(
requiredChildDistributionExpressions: Option[Seq[Expression]],
isStreaming: Boolean,
numShufflePartitions: Option[Int],
groupingExpressions: Seq[NamedExpression],
aggregateExpressions: Seq[AggregateExpression],
aggregateAttributes: Seq[Attribute],
initialInputBufferOffset: Int,
resultExpressions: Seq[NamedExpression],
child: SparkPlan)
extends BaseAggregateExec {
override lazy val allAttributes: AttributeSeq =
child.output ++ aggregateBufferAttributes ++ aggregateAttributes ++
aggregateExpressions.flatMap(_.aggregateFunction.inputAggBufferAttributes)
override lazy val metrics = Map(
"numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"),
"aggTime" -> SQLMetrics.createTimingMetric(sparkContext, "time in aggregation build"),
"spillSize" -> SQLMetrics.createSizeMetric(sparkContext, "spill size"),
"numTasksFallBacked" -> SQLMetrics.createMetric(sparkContext, "number of sort fallback tasks")
)
protected override def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
val aggTime = longMetric("aggTime")
val spillSize = longMetric("spillSize")
val numTasksFallBacked = longMetric("numTasksFallBacked")
val fallbackCountThreshold = conf.objectAggSortBasedFallbackThreshold
child.execute().mapPartitionsWithIndexInternal { (partIndex, iter) =>
val beforeAgg = System.nanoTime()
val hasInput = iter.hasNext
val res = if (!hasInput && groupingExpressions.nonEmpty) {
// This is a grouped aggregate and the input kvIterator is empty,
// so return an empty kvIterator.
Iterator.empty
} else {
val aggregationIterator =
new ObjectAggregationIterator(
partIndex,
child.output,
groupingExpressions,
aggregateExpressions,
aggregateAttributes,
initialInputBufferOffset,
resultExpressions,
(expressions, inputSchema) =>
MutableProjection.create(expressions, inputSchema),
inputAttributes,
iter,
fallbackCountThreshold,
numOutputRows,
spillSize,
numTasksFallBacked)
if (!hasInput && groupingExpressions.isEmpty) {
numOutputRows += 1
Iterator.single[UnsafeRow](aggregationIterator.outputForEmptyGroupingKeyWithoutInput())
} else {
aggregationIterator
}
}
aggTime += NANOSECONDS.toMillis(System.nanoTime() - beforeAgg)
res
}
}
override def verboseString(maxFields: Int): String = toString(verbose = true, maxFields)
override def simpleString(maxFields: Int): String = toString(verbose = false, maxFields)
private def toString(verbose: Boolean, maxFields: Int): String = {
val allAggregateExpressions = aggregateExpressions
val keyString = truncatedString(groupingExpressions, "[", ", ", "]", maxFields)
val functionString = truncatedString(allAggregateExpressions, "[", ", ", "]", maxFields)
val outputString = truncatedString(output, "[", ", ", "]", maxFields)
if (verbose) {
s"ObjectHashAggregate(keys=$keyString, functions=$functionString, output=$outputString)"
} else {
s"ObjectHashAggregate(keys=$keyString, functions=$functionString)"
}
}
override protected def withNewChildInternal(newChild: SparkPlan): ObjectHashAggregateExec =
copy(child = newChild)
}
相关信息
相关文章
spark AggregateCodegenSupport 源码
spark MergingSessionsIterator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦