spark ObjectHashAggregateExec 源码

  • 2022-10-20
  • 浏览 (297)

spark ObjectHashAggregateExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/ObjectHashAggregateExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.aggregate

import java.util.concurrent.TimeUnit._

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution._
import org.apache.spark.sql.execution.metric.SQLMetrics

/**
 * A hash-based aggregate operator that supports [[TypedImperativeAggregate]] functions that may
 * use arbitrary JVM objects as aggregation states.
 *
 * Similar to [[HashAggregateExec]], this operator also falls back to sort-based aggregation when
 * the size of the internal hash map exceeds the threshold. The differences are:
 *
 *  - It uses safe rows as aggregation buffer since it must support JVM objects as aggregation
 *    states.
 *
 *  - It tracks entry count of the hash map instead of byte size to decide when we should fall back.
 *    This is because it's hard to estimate the accurate size of arbitrary JVM objects in a
 *    lightweight way.
 *
 *  - Whenever fallen back to sort-based aggregation, this operator feeds all of the rest input rows
 *    into external sorters instead of building more hash map(s) as what [[HashAggregateExec]] does.
 *    This is because having too many JVM object aggregation states floating there can be dangerous
 *    for GC.
 *
 *  - CodeGen is not supported yet.
 *
 * This operator may be turned off by setting the following SQL configuration to `false`:
 * {{{
 *   spark.sql.execution.useObjectHashAggregateExec
 * }}}
 * The fallback threshold can be configured by tuning:
 * {{{
 *   spark.sql.objectHashAggregate.sortBased.fallbackThreshold
 * }}}
 */
case class ObjectHashAggregateExec(
    requiredChildDistributionExpressions: Option[Seq[Expression]],
    isStreaming: Boolean,
    numShufflePartitions: Option[Int],
    groupingExpressions: Seq[NamedExpression],
    aggregateExpressions: Seq[AggregateExpression],
    aggregateAttributes: Seq[Attribute],
    initialInputBufferOffset: Int,
    resultExpressions: Seq[NamedExpression],
    child: SparkPlan)
  extends BaseAggregateExec {

  override lazy val allAttributes: AttributeSeq =
    child.output ++ aggregateBufferAttributes ++ aggregateAttributes ++
      aggregateExpressions.flatMap(_.aggregateFunction.inputAggBufferAttributes)

  override lazy val metrics = Map(
    "numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"),
    "aggTime" -> SQLMetrics.createTimingMetric(sparkContext, "time in aggregation build"),
    "spillSize" -> SQLMetrics.createSizeMetric(sparkContext, "spill size"),
    "numTasksFallBacked" -> SQLMetrics.createMetric(sparkContext, "number of sort fallback tasks")
  )

  protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    val aggTime = longMetric("aggTime")
    val spillSize = longMetric("spillSize")
    val numTasksFallBacked = longMetric("numTasksFallBacked")
    val fallbackCountThreshold = conf.objectAggSortBasedFallbackThreshold

    child.execute().mapPartitionsWithIndexInternal { (partIndex, iter) =>
      val beforeAgg = System.nanoTime()
      val hasInput = iter.hasNext
      val res = if (!hasInput && groupingExpressions.nonEmpty) {
        // This is a grouped aggregate and the input kvIterator is empty,
        // so return an empty kvIterator.
        Iterator.empty
      } else {
        val aggregationIterator =
          new ObjectAggregationIterator(
            partIndex,
            child.output,
            groupingExpressions,
            aggregateExpressions,
            aggregateAttributes,
            initialInputBufferOffset,
            resultExpressions,
            (expressions, inputSchema) =>
              MutableProjection.create(expressions, inputSchema),
            inputAttributes,
            iter,
            fallbackCountThreshold,
            numOutputRows,
            spillSize,
            numTasksFallBacked)
        if (!hasInput && groupingExpressions.isEmpty) {
          numOutputRows += 1
          Iterator.single[UnsafeRow](aggregationIterator.outputForEmptyGroupingKeyWithoutInput())
        } else {
          aggregationIterator
        }
      }
      aggTime += NANOSECONDS.toMillis(System.nanoTime() - beforeAgg)
      res
    }
  }

  override def verboseString(maxFields: Int): String = toString(verbose = true, maxFields)

  override def simpleString(maxFields: Int): String = toString(verbose = false, maxFields)

  private def toString(verbose: Boolean, maxFields: Int): String = {
    val allAggregateExpressions = aggregateExpressions
    val keyString = truncatedString(groupingExpressions, "[", ", ", "]", maxFields)
    val functionString = truncatedString(allAggregateExpressions, "[", ", ", "]", maxFields)
    val outputString = truncatedString(output, "[", ", ", "]", maxFields)
    if (verbose) {
      s"ObjectHashAggregate(keys=$keyString, functions=$functionString, output=$outputString)"
    } else {
      s"ObjectHashAggregate(keys=$keyString, functions=$functionString)"
    }
  }

  override protected def withNewChildInternal(newChild: SparkPlan): ObjectHashAggregateExec =
    copy(child = newChild)
}

相关信息

spark 源码目录

相关文章

spark AggUtils 源码

spark AggregateCodegenSupport 源码

spark AggregationIterator 源码

spark BaseAggregateExec 源码

spark HashAggregateExec 源码

spark HashMapGenerator 源码

spark MergingSessionsExec 源码

spark MergingSessionsIterator 源码

spark ObjectAggregationIterator 源码

spark ObjectAggregationMap 源码

0  赞