spark AggregationIterator 源码

  • 2022-10-20
  • 浏览 (304)

spark AggregationIterator 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/AggregationIterator.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.aggregate

import scala.collection.mutable.ArrayBuffer

import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._

/**
 * The base class of [[SortBasedAggregationIterator]], [[TungstenAggregationIterator]] and
 * [[ObjectAggregationIterator]].
 * It mainly contains two parts:
 * 1. It initializes aggregate functions.
 * 2. It creates two functions, `processRow` and `generateOutput` based on [[AggregateMode]] of
 *    its aggregate functions. `processRow` is the function to handle an input. `generateOutput`
 *    is used to generate result.
 */
abstract class AggregationIterator(
    partIndex: Int,
    groupingExpressions: Seq[NamedExpression],
    inputAttributes: Seq[Attribute],
    aggregateExpressions: Seq[AggregateExpression],
    aggregateAttributes: Seq[Attribute],
    initialInputBufferOffset: Int,
    resultExpressions: Seq[NamedExpression],
    newMutableProjection: (Seq[Expression], Seq[Attribute]) => MutableProjection)
  extends Iterator[UnsafeRow] with Logging {

  ///////////////////////////////////////////////////////////////////////////
  // Initializing functions.
  ///////////////////////////////////////////////////////////////////////////

  /**
   * The following combinations of AggregationMode are supported:
   * - Partial
   * - PartialMerge (for single distinct)
   * - Partial and PartialMerge (for single distinct)
   * - Final
   * - Complete (for SortAggregate with functions that does not support Partial)
   * - Final and Complete (currently not used)
   *
   * TODO: AggregateMode should have only two modes: Update and Merge, AggregateExpression
   * could have a flag to tell it's final or not.
   */
  {
    val modes = aggregateExpressions.map(_.mode).distinct.toSet
    require(modes.size <= 2,
      s"$aggregateExpressions are not supported because they have more than 2 distinct modes.")
    require(modes.subsetOf(Set(Partial, PartialMerge)) || modes.subsetOf(Set(Final, Complete)),
      s"$aggregateExpressions can't have Partial/PartialMerge and Final/Complete in the same time.")
  }

  // Initialize all AggregateFunctions by binding references if necessary,
  // and set inputBufferOffset and mutableBufferOffset.
  protected def initializeAggregateFunctions(
      expressions: Seq[AggregateExpression],
      startingInputBufferOffset: Int): Array[AggregateFunction] = {
    var mutableBufferOffset = 0
    var inputBufferOffset: Int = startingInputBufferOffset
    val functions = new Array[AggregateFunction](expressions.length)
    var i = 0
    val inputAttributeSeq: AttributeSeq = inputAttributes
    for (expression <- expressions) {
      val func = expression.aggregateFunction
      val funcWithBoundReferences: AggregateFunction = expression.mode match {
        case Partial | Complete if func.isInstanceOf[ImperativeAggregate] =>
          // We need to create BoundReferences if the function is not an
          // expression-based aggregate function (it does not support code-gen) and the mode of
          // this function is Partial or Complete because we will call eval of this
          // function's children in the update method of this aggregate function.
          // Those eval calls require BoundReferences to work.
          BindReferences.bindReference(func, inputAttributeSeq)
        case _ =>
          // We only need to set inputBufferOffset for aggregate functions with mode
          // PartialMerge and Final.
          val updatedFunc = func match {
            case function: ImperativeAggregate =>
              function.withNewInputAggBufferOffset(inputBufferOffset)
            case function => function
          }
          inputBufferOffset += func.aggBufferSchema.length
          updatedFunc
      }
      val funcWithUpdatedAggBufferOffset = funcWithBoundReferences match {
        case function: ImperativeAggregate =>
          // Set mutableBufferOffset for this function. It is important that setting
          // mutableBufferOffset happens after all potential bindReference operations
          // because bindReference will create a new instance of the function.
          function.withNewMutableAggBufferOffset(mutableBufferOffset)
        case function => function
      }
      mutableBufferOffset += funcWithUpdatedAggBufferOffset.aggBufferSchema.length
      functions(i) = funcWithUpdatedAggBufferOffset
      i += 1
    }
    functions
  }

  protected val aggregateFunctions: Array[AggregateFunction] =
    initializeAggregateFunctions(aggregateExpressions, initialInputBufferOffset)

  // Positions of those imperative aggregate functions in allAggregateFunctions.
  // For example, we have func1, func2, func3, func4 in aggregateFunctions, and
  // func2 and func3 are imperative aggregate functions.
  // ImperativeAggregateFunctionPositions will be [1, 2].
  protected[this] val allImperativeAggregateFunctionPositions: Array[Int] = {
    val positions = new ArrayBuffer[Int]()
    var i = 0
    while (i < aggregateFunctions.length) {
      aggregateFunctions(i) match {
        case agg: DeclarativeAggregate =>
        case _ => positions += i
      }
      i += 1
    }
    positions.toArray
  }

  // The projection used to initialize buffer values for all expression-based aggregates.
  protected[this] val expressionAggInitialProjection = {
    val initExpressions = aggregateFunctions.flatMap {
      case ae: DeclarativeAggregate => ae.initialValues
      // For the positions corresponding to imperative aggregate functions, we'll use special
      // no-op expressions which are ignored during projection code-generation.
      case i: ImperativeAggregate => Seq.fill(i.aggBufferAttributes.length)(NoOp)
    }
    newMutableProjection(initExpressions, Nil)
  }

  // All imperative AggregateFunctions.
  protected[this] val allImperativeAggregateFunctions: Array[ImperativeAggregate] =
    allImperativeAggregateFunctionPositions
      .map(aggregateFunctions)
      .map(_.asInstanceOf[ImperativeAggregate])

  // Initializing functions used to process a row.
  protected def generateProcessRow(
      expressions: Seq[AggregateExpression],
      functions: Seq[AggregateFunction],
      inputAttributes: Seq[Attribute]): (InternalRow, InternalRow) => Unit = {
    val joinedRow = new JoinedRow
    if (expressions.nonEmpty) {
      val mergeExpressions =
        functions.zip(expressions.map(ae => (ae.mode, ae.isDistinct, ae.filter))).flatMap {
          case (ae: DeclarativeAggregate, (mode, isDistinct, filter)) =>
            mode match {
              case Partial | Complete =>
                if (filter.isDefined) {
                  ae.updateExpressions.zip(ae.aggBufferAttributes).map {
                    case (updateExpr, attr) => If(filter.get, updateExpr, attr)
                  }
                } else {
                  ae.updateExpressions
                }
              case PartialMerge | Final => ae.mergeExpressions
            }
          case (agg: AggregateFunction, _) => Seq.fill(agg.aggBufferAttributes.length)(NoOp)
        }
      // Initialize predicates for aggregate functions if necessary
      val predicateOptions = expressions.map {
        case AggregateExpression(_, mode, _, Some(filter), _) =>
          mode match {
            case Partial | Complete =>
              val predicate = Predicate.create(filter, inputAttributes)
              predicate.initialize(partIndex)
              Some(predicate)
            case _ => None
          }
        case _ => None
      }
      val updateFunctions = functions.zipWithIndex.collect {
        case (ae: ImperativeAggregate, i) =>
          expressions(i).mode match {
            case Partial | Complete =>
              if (predicateOptions(i).isDefined) {
                (buffer: InternalRow, row: InternalRow) =>
                  if (predicateOptions(i).get.eval(row)) { ae.update(buffer, row) }
              } else {
                (buffer: InternalRow, row: InternalRow) => ae.update(buffer, row)
              }
            case PartialMerge | Final =>
              (buffer: InternalRow, row: InternalRow) => ae.merge(buffer, row)
          }
      }.toArray
      // This projection is used to merge buffer values for all expression-based aggregates.
      val aggregationBufferSchema = functions.flatMap(_.aggBufferAttributes)
      val updateProjection =
        newMutableProjection(mergeExpressions, aggregationBufferSchema ++ inputAttributes)

      (currentBuffer: InternalRow, row: InternalRow) => {
        // Process all expression-based aggregate functions.
        updateProjection.target(currentBuffer)(joinedRow(currentBuffer, row))
        // Process all imperative aggregate functions.
        var i = 0
        while (i < updateFunctions.length) {
          updateFunctions(i)(currentBuffer, row)
          i += 1
        }
      }
    } else {
      // Grouping only.
      (currentBuffer: InternalRow, row: InternalRow) => {}
    }
  }

  protected val processRow: (InternalRow, InternalRow) => Unit =
    generateProcessRow(aggregateExpressions, aggregateFunctions, inputAttributes)

  protected val groupingProjection: UnsafeProjection =
    UnsafeProjection.create(groupingExpressions, inputAttributes)
  protected val groupingAttributes = groupingExpressions.map(_.toAttribute)

  // Initializing the function used to generate the output row.
  protected def generateResultProjection(): (UnsafeRow, InternalRow) => UnsafeRow = {
    val joinedRow = new JoinedRow
    val modes = aggregateExpressions.map(_.mode).distinct
    val bufferAttributes = aggregateFunctions.flatMap(_.aggBufferAttributes)
    if (modes.contains(Final) || modes.contains(Complete)) {
      val evalExpressions = aggregateFunctions.map {
        case ae: DeclarativeAggregate => ae.evaluateExpression
        case agg: AggregateFunction => NoOp
      }
      val aggregateResult = new SpecificInternalRow(aggregateAttributes.map(_.dataType))
      val expressionAggEvalProjection = newMutableProjection(evalExpressions, bufferAttributes)
      expressionAggEvalProjection.target(aggregateResult)

      val resultProjection =
        UnsafeProjection.create(resultExpressions, groupingAttributes ++ aggregateAttributes)
      resultProjection.initialize(partIndex)

      (currentGroupingKey: UnsafeRow, currentBuffer: InternalRow) => {
        // Generate results for all expression-based aggregate functions.
        expressionAggEvalProjection(currentBuffer)
        // Generate results for all imperative aggregate functions.
        var i = 0
        while (i < allImperativeAggregateFunctions.length) {
          aggregateResult.update(
            allImperativeAggregateFunctionPositions(i),
            allImperativeAggregateFunctions(i).eval(currentBuffer))
          i += 1
        }
        resultProjection(joinedRow(currentGroupingKey, aggregateResult))
      }
    } else if (modes.contains(Partial) || modes.contains(PartialMerge)) {
      val resultProjection = UnsafeProjection.create(
        groupingAttributes ++ bufferAttributes,
        groupingAttributes ++ bufferAttributes)
      resultProjection.initialize(partIndex)

      // TypedImperativeAggregate stores generic object in aggregation buffer, and requires
      // calling serialization before shuffling. See [[TypedImperativeAggregate]] for more info.
      val typedImperativeAggregates: Array[TypedImperativeAggregate[_]] = {
        aggregateFunctions.collect {
          case (ag: TypedImperativeAggregate[_]) => ag
        }
      }

      (currentGroupingKey: UnsafeRow, currentBuffer: InternalRow) => {
        // Serializes the generic object stored in aggregation buffer
        var i = 0
        while (i < typedImperativeAggregates.length) {
          typedImperativeAggregates(i).serializeAggregateBufferInPlace(currentBuffer)
          i += 1
        }
        resultProjection(joinedRow(currentGroupingKey, currentBuffer))
      }
    } else {
      // Grouping-only: we only output values based on grouping expressions.
      val resultProjection = UnsafeProjection.create(resultExpressions, groupingAttributes)
      resultProjection.initialize(partIndex)
      (currentGroupingKey: UnsafeRow, currentBuffer: InternalRow) => {
        resultProjection(currentGroupingKey)
      }
    }
  }

  protected val generateOutput: (UnsafeRow, InternalRow) => UnsafeRow =
    generateResultProjection()

  /** Initializes buffer values for all aggregate functions. */
  protected def initializeBuffer(buffer: InternalRow): Unit = {
    expressionAggInitialProjection.target(buffer)(EmptyRow)
    var i = 0
    while (i < allImperativeAggregateFunctions.length) {
      allImperativeAggregateFunctions(i).initialize(buffer)
      i += 1
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AggUtils 源码

spark AggregateCodegenSupport 源码

spark BaseAggregateExec 源码

spark HashAggregateExec 源码

spark HashMapGenerator 源码

spark MergingSessionsExec 源码

spark MergingSessionsIterator 源码

spark ObjectAggregationIterator 源码

spark ObjectAggregationMap 源码

spark ObjectHashAggregateExec 源码

0  赞