spark MergingSessionsExec 源码
spark MergingSessionsExec 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/MergingSessionsExec.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.aggregate
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Ascending, Attribute, Expression, MutableProjection, NamedExpression, SortOrder, UnsafeRow}
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.execution.SparkPlan
import org.apache.spark.sql.execution.metric.SQLMetrics
/**
* This node is a variant of SortAggregateExec which merges the session windows based on the fact
* child node will provide inputs as sorted by group keys + the start time of session window.
*
* When merging windows, it also applies aggregations on merged window, which eliminates the
* necessity on buffering inputs (which requires copying rows) and update the session spec
* for each input.
*
* This class receives requiredChildDistribution from caller, to enable merging session in
* local partition before shuffling. Specifying both parameters to None won't trigger shuffle,
* but sort would still happen per local partition.
*
* Refer [[MergingSessionsIterator]] for more details.
*/
case class MergingSessionsExec(
requiredChildDistributionExpressions: Option[Seq[Expression]],
isStreaming: Boolean,
numShufflePartitions: Option[Int],
groupingExpressions: Seq[NamedExpression],
sessionExpression: NamedExpression,
aggregateExpressions: Seq[AggregateExpression],
aggregateAttributes: Seq[Attribute],
initialInputBufferOffset: Int,
resultExpressions: Seq[NamedExpression],
child: SparkPlan) extends BaseAggregateExec {
private val keyWithoutSessionExpressions = groupingExpressions.diff(Seq(sessionExpression))
override lazy val metrics = Map(
"numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))
override def output: Seq[Attribute] = child.output
override def outputOrdering: Seq[SortOrder] = child.outputOrdering
override def requiredChildOrdering: Seq[Seq[SortOrder]] = {
Seq((keyWithoutSessionExpressions ++ Seq(sessionExpression)).map(SortOrder(_, Ascending)))
}
override protected def doExecute(): RDD[InternalRow] = {
val numOutputRows = longMetric("numOutputRows")
child.execute().mapPartitionsWithIndexInternal { (partIndex, iter) =>
// Because the constructor of an aggregation iterator will read at least the first row,
// we need to get the value of iter.hasNext first.
val hasInput = iter.hasNext
if (!hasInput && groupingExpressions.nonEmpty) {
// This is a grouped aggregate and the input iterator is empty,
// so return an empty iterator.
Iterator[UnsafeRow]()
} else {
val outputIter = new MergingSessionsIterator(
partIndex,
groupingExpressions,
sessionExpression,
child.output,
iter,
aggregateExpressions,
aggregateAttributes,
initialInputBufferOffset,
resultExpressions,
(expressions, inputSchema) =>
MutableProjection.create(expressions, inputSchema),
numOutputRows)
if (!hasInput && groupingExpressions.isEmpty) {
// There is no input and there is no grouping expressions.
// We need to output a single row as the output.
numOutputRows += 1
Iterator[UnsafeRow](outputIter.outputForEmptyGroupingKeyWithoutInput())
} else {
outputIter
}
}
}
}
override protected def withNewChildInternal(newChild: SparkPlan): MergingSessionsExec =
copy(child = newChild)
}
相关信息
相关文章
spark AggregateCodegenSupport 源码
spark MergingSessionsIterator 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦