spark GBTExample 源码

  • 2022-10-20
  • 浏览 (247)

spark GBTExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/GBTExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

import java.util.Locale

import scala.collection.mutable

import scopt.OptionParser

import org.apache.spark.examples.mllib.AbstractParams
import org.apache.spark.ml.{Pipeline, PipelineStage}
import org.apache.spark.ml.classification.{GBTClassificationModel, GBTClassifier}
import org.apache.spark.ml.feature.{StringIndexer, VectorIndexer}
import org.apache.spark.ml.regression.{GBTRegressionModel, GBTRegressor}
import org.apache.spark.sql.{DataFrame, SparkSession}


/**
 * An example runner for decision trees. Run with
 * {{{
 * ./bin/run-example ml.GBTExample [options]
 * }}}
 * Decision Trees and ensembles can take a large amount of memory. If the run-example command
 * above fails, try running via spark-submit and specifying the amount of memory as at least 1g.
 * For local mode, run
 * {{{
 * ./bin/spark-submit --class org.apache.spark.examples.ml.GBTExample --driver-memory 1g
 *   [examples JAR path] [options]
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object GBTExample {

  case class Params(
      input: String = null,
      testInput: String = "",
      dataFormat: String = "libsvm",
      algo: String = "classification",
      maxDepth: Int = 5,
      maxBins: Int = 32,
      minInstancesPerNode: Int = 1,
      minInfoGain: Double = 0.0,
      maxIter: Int = 10,
      fracTest: Double = 0.2,
      cacheNodeIds: Boolean = false,
      checkpointDir: Option[String] = None,
      checkpointInterval: Int = 10) extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("GBTExample") {
      head("GBTExample: an example Gradient-Boosted Trees app.")
      opt[String]("algo")
        .text(s"algorithm (classification, regression), default: ${defaultParams.algo}")
        .action((x, c) => c.copy(algo = x))
      opt[Int]("maxDepth")
        .text(s"max depth of the tree, default: ${defaultParams.maxDepth}")
        .action((x, c) => c.copy(maxDepth = x))
      opt[Int]("maxBins")
        .text(s"max number of bins, default: ${defaultParams.maxBins}")
        .action((x, c) => c.copy(maxBins = x))
      opt[Int]("minInstancesPerNode")
        .text(s"min number of instances required at child nodes to create the parent split," +
        s" default: ${defaultParams.minInstancesPerNode}")
        .action((x, c) => c.copy(minInstancesPerNode = x))
      opt[Double]("minInfoGain")
        .text(s"min info gain required to create a split, default: ${defaultParams.minInfoGain}")
        .action((x, c) => c.copy(minInfoGain = x))
      opt[Int]("maxIter")
        .text(s"number of trees in ensemble, default: ${defaultParams.maxIter}")
        .action((x, c) => c.copy(maxIter = x))
      opt[Double]("fracTest")
        .text(s"fraction of data to hold out for testing. If given option testInput, " +
        s"this option is ignored. default: ${defaultParams.fracTest}")
        .action((x, c) => c.copy(fracTest = x))
      opt[Boolean]("cacheNodeIds")
        .text(s"whether to use node Id cache during training, " +
        s"default: ${defaultParams.cacheNodeIds}")
        .action((x, c) => c.copy(cacheNodeIds = x))
      opt[String]("checkpointDir")
        .text(s"checkpoint directory where intermediate node Id caches will be stored, " +
        s"default: ${
          defaultParams.checkpointDir match {
            case Some(strVal) => strVal
            case None => "None"
          }
        }")
        .action((x, c) => c.copy(checkpointDir = Some(x)))
      opt[Int]("checkpointInterval")
        .text(s"how often to checkpoint the node Id cache, " +
        s"default: ${defaultParams.checkpointInterval}")
        .action((x, c) => c.copy(checkpointInterval = x))
      opt[String]("testInput")
        .text(s"input path to test dataset. If given, option fracTest is ignored." +
        s" default: ${defaultParams.testInput}")
        .action((x, c) => c.copy(testInput = x))
      opt[String]("dataFormat")
        .text("data format: libsvm (default), dense (deprecated in Spark v1.1)")
        .action((x, c) => c.copy(dataFormat = x))
      arg[String]("<input>")
        .text("input path to labeled examples")
        .required()
        .action((x, c) => c.copy(input = x))
      checkConfig { params =>
        if (params.fracTest < 0 || params.fracTest >= 1) {
          failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1).")
        } else {
          success
        }
      }
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  def run(params: Params): Unit = {
    val spark = SparkSession
      .builder
      .appName(s"GBTExample with $params")
      .getOrCreate()

    params.checkpointDir.foreach(spark.sparkContext.setCheckpointDir)
    val algo = params.algo.toLowerCase(Locale.ROOT)

    println(s"GBTExample with parameters:\n$params")

    // Load training and test data and cache it.
    val (training: DataFrame, test: DataFrame) = DecisionTreeExample.loadDatasets(params.input,
      params.dataFormat, params.testInput, algo, params.fracTest)

    // Set up Pipeline
    val stages = new mutable.ArrayBuffer[PipelineStage]()
    // (1) For classification, re-index classes.
    val labelColName = if (algo == "classification") "indexedLabel" else "label"
    if (algo == "classification") {
      val labelIndexer = new StringIndexer()
        .setInputCol("label")
        .setOutputCol(labelColName)
      stages += labelIndexer
    }
    // (2) Identify categorical features using VectorIndexer.
    //     Features with more than maxCategories values will be treated as continuous.
    val featuresIndexer = new VectorIndexer()
      .setInputCol("features")
      .setOutputCol("indexedFeatures")
      .setMaxCategories(10)
    stages += featuresIndexer
    // (3) Learn GBT.
    val dt = algo match {
      case "classification" =>
        new GBTClassifier()
          .setFeaturesCol("indexedFeatures")
          .setLabelCol(labelColName)
          .setMaxDepth(params.maxDepth)
          .setMaxBins(params.maxBins)
          .setMinInstancesPerNode(params.minInstancesPerNode)
          .setMinInfoGain(params.minInfoGain)
          .setCacheNodeIds(params.cacheNodeIds)
          .setCheckpointInterval(params.checkpointInterval)
          .setMaxIter(params.maxIter)
      case "regression" =>
        new GBTRegressor()
          .setFeaturesCol("indexedFeatures")
          .setLabelCol(labelColName)
          .setMaxDepth(params.maxDepth)
          .setMaxBins(params.maxBins)
          .setMinInstancesPerNode(params.minInstancesPerNode)
          .setMinInfoGain(params.minInfoGain)
          .setCacheNodeIds(params.cacheNodeIds)
          .setCheckpointInterval(params.checkpointInterval)
          .setMaxIter(params.maxIter)
      case _ => throw new IllegalArgumentException(s"Algo ${params.algo} not supported.")
    }
    stages += dt
    val pipeline = new Pipeline().setStages(stages.toArray)

    // Fit the Pipeline.
    val startTime = System.nanoTime()
    val pipelineModel = pipeline.fit(training)
    val elapsedTime = (System.nanoTime() - startTime) / 1e9
    println(s"Training time: $elapsedTime seconds")

    // Get the trained GBT from the fitted PipelineModel.
    algo match {
      case "classification" =>
        val rfModel = pipelineModel.stages.last.asInstanceOf[GBTClassificationModel]
        if (rfModel.totalNumNodes < 30) {
          println(rfModel.toDebugString) // Print full model.
        } else {
          println(rfModel) // Print model summary.
        }
      case "regression" =>
        val rfModel = pipelineModel.stages.last.asInstanceOf[GBTRegressionModel]
        if (rfModel.totalNumNodes < 30) {
          println(rfModel.toDebugString) // Print full model.
        } else {
          println(rfModel) // Print model summary.
        }
      case _ => throw new IllegalArgumentException(s"Algo ${params.algo} not supported.")
    }

    // Evaluate model on training, test data.
    algo match {
      case "classification" =>
        println("Training data results:")
        DecisionTreeExample.evaluateClassificationModel(pipelineModel, training, labelColName)
        println("Test data results:")
        DecisionTreeExample.evaluateClassificationModel(pipelineModel, test, labelColName)
      case "regression" =>
        println("Training data results:")
        DecisionTreeExample.evaluateRegressionModel(pipelineModel, training, labelColName)
        println("Test data results:")
        DecisionTreeExample.evaluateRegressionModel(pipelineModel, test, labelColName)
      case _ =>
        throw new IllegalArgumentException(s"Algo ${params.algo} not supported.")
    }

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞