spark DecisionTreeExample 源码

  • 2022-10-20
  • 浏览 (256)

spark DecisionTreeExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

import java.util.Locale

import scala.collection.mutable

import scopt.OptionParser

import org.apache.spark.examples.mllib.AbstractParams
import org.apache.spark.ml.{Pipeline, PipelineStage, Transformer}
import org.apache.spark.ml.classification.{DecisionTreeClassificationModel, DecisionTreeClassifier}
import org.apache.spark.ml.feature.{StringIndexer, VectorIndexer}
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.ml.regression.{DecisionTreeRegressionModel, DecisionTreeRegressor}
import org.apache.spark.ml.util.MetadataUtils
import org.apache.spark.mllib.evaluation.{MulticlassMetrics, RegressionMetrics}
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
 * An example runner for decision trees. Run with
 * {{{
 * ./bin/run-example ml.DecisionTreeExample [options]
 * }}}
 * Note that Decision Trees can take a large amount of memory. If the run-example command above
 * fails, try running via spark-submit and specifying the amount of memory as at least 1g.
 * For local mode, run
 * {{{
 * ./bin/spark-submit --class org.apache.spark.examples.ml.DecisionTreeExample --driver-memory 1g
 *   [examples JAR path] [options]
 * }}}
 * If you use it as a template to create your own app, please use `spark-submit` to submit your app.
 */
object DecisionTreeExample {

  case class Params(
      input: String = null,
      testInput: String = "",
      dataFormat: String = "libsvm",
      algo: String = "Classification",
      maxDepth: Int = 5,
      maxBins: Int = 32,
      minInstancesPerNode: Int = 1,
      minInfoGain: Double = 0.0,
      fracTest: Double = 0.2,
      cacheNodeIds: Boolean = false,
      checkpointDir: Option[String] = None,
      checkpointInterval: Int = 10) extends AbstractParams[Params]

  def main(args: Array[String]): Unit = {
    val defaultParams = Params()

    val parser = new OptionParser[Params]("DecisionTreeExample") {
      head("DecisionTreeExample: an example decision tree app.")
      opt[String]("algo")
        .text(s"algorithm (classification, regression), default: ${defaultParams.algo}")
        .action((x, c) => c.copy(algo = x))
      opt[Int]("maxDepth")
        .text(s"max depth of the tree, default: ${defaultParams.maxDepth}")
        .action((x, c) => c.copy(maxDepth = x))
      opt[Int]("maxBins")
        .text(s"max number of bins, default: ${defaultParams.maxBins}")
        .action((x, c) => c.copy(maxBins = x))
      opt[Int]("minInstancesPerNode")
        .text(s"min number of instances required at child nodes to create the parent split," +
          s" default: ${defaultParams.minInstancesPerNode}")
        .action((x, c) => c.copy(minInstancesPerNode = x))
      opt[Double]("minInfoGain")
        .text(s"min info gain required to create a split, default: ${defaultParams.minInfoGain}")
        .action((x, c) => c.copy(minInfoGain = x))
      opt[Double]("fracTest")
        .text(s"fraction of data to hold out for testing. If given option testInput, " +
          s"this option is ignored. default: ${defaultParams.fracTest}")
        .action((x, c) => c.copy(fracTest = x))
      opt[Boolean]("cacheNodeIds")
        .text(s"whether to use node Id cache during training, " +
          s"default: ${defaultParams.cacheNodeIds}")
        .action((x, c) => c.copy(cacheNodeIds = x))
      opt[String]("checkpointDir")
        .text(s"checkpoint directory where intermediate node Id caches will be stored, " +
         s"default: ${defaultParams.checkpointDir match {
           case Some(strVal) => strVal
           case None => "None"
         }}")
        .action((x, c) => c.copy(checkpointDir = Some(x)))
      opt[Int]("checkpointInterval")
        .text(s"how often to checkpoint the node Id cache, " +
         s"default: ${defaultParams.checkpointInterval}")
        .action((x, c) => c.copy(checkpointInterval = x))
      opt[String]("testInput")
        .text(s"input path to test dataset. If given, option fracTest is ignored." +
          s" default: ${defaultParams.testInput}")
        .action((x, c) => c.copy(testInput = x))
      opt[String]("dataFormat")
        .text("data format: libsvm (default), dense (deprecated in Spark v1.1)")
        .action((x, c) => c.copy(dataFormat = x))
      arg[String]("<input>")
        .text("input path to labeled examples")
        .required()
        .action((x, c) => c.copy(input = x))
      checkConfig { params =>
        if (params.fracTest < 0 || params.fracTest >= 1) {
          failure(s"fracTest ${params.fracTest} value incorrect; should be in [0,1).")
        } else {
          success
        }
      }
    }

    parser.parse(args, defaultParams) match {
      case Some(params) => run(params)
      case _ => sys.exit(1)
    }
  }

  /** Load a dataset from the given path, using the given format */
  private[ml] def loadData(
      spark: SparkSession,
      path: String,
      format: String,
      expectedNumFeatures: Option[Int] = None): DataFrame = {
    import spark.implicits._

    format match {
      case "dense" => MLUtils.loadLabeledPoints(spark.sparkContext, path).toDF()
      case "libsvm" => expectedNumFeatures match {
        case Some(numFeatures) => spark.read.option("numFeatures", numFeatures.toString)
          .format("libsvm").load(path)
        case None => spark.read.format("libsvm").load(path)
      }
      case _ => throw new IllegalArgumentException(s"Bad data format: $format")
    }
  }

  /**
   * Load training and test data from files.
   * @param input  Path to input dataset.
   * @param dataFormat  "libsvm" or "dense"
   * @param testInput  Path to test dataset.
   * @param algo  Classification or Regression
   * @param fracTest  Fraction of input data to hold out for testing. Ignored if testInput given.
   * @return  (training dataset, test dataset)
   */
  private[ml] def loadDatasets(
      input: String,
      dataFormat: String,
      testInput: String,
      algo: String,
      fracTest: Double): (DataFrame, DataFrame) = {
    val spark = SparkSession
      .builder
      .getOrCreate()

    // Load training data
    val origExamples: DataFrame = loadData(spark, input, dataFormat)

    // Load or create test set
    val dataframes: Array[DataFrame] = if (testInput != "") {
      // Load testInput.
      val numFeatures = origExamples.first().getAs[Vector](1).size
      val origTestExamples: DataFrame =
        loadData(spark, testInput, dataFormat, Some(numFeatures))
      Array(origExamples, origTestExamples)
    } else {
      // Split input into training, test.
      origExamples.randomSplit(Array(1.0 - fracTest, fracTest), seed = 12345)
    }

    val training = dataframes(0).cache()
    val test = dataframes(1).cache()

    val numTraining = training.count()
    val numTest = test.count()
    val numFeatures = training.select("features").first().getAs[Vector](0).size
    println("Loaded data:")
    println(s"  numTraining = $numTraining, numTest = $numTest")
    println(s"  numFeatures = $numFeatures")

    (training, test)
  }

  def run(params: Params): Unit = {
    val spark = SparkSession
      .builder
      .appName(s"DecisionTreeExample with $params")
      .getOrCreate()

    params.checkpointDir.foreach(spark.sparkContext.setCheckpointDir)
    val algo = params.algo.toLowerCase(Locale.ROOT)

    println(s"DecisionTreeExample with parameters:\n$params")

    // Load training and test data and cache it.
    val (training: DataFrame, test: DataFrame) =
      loadDatasets(params.input, params.dataFormat, params.testInput, algo, params.fracTest)

    // Set up Pipeline.
    val stages = new mutable.ArrayBuffer[PipelineStage]()
    // (1) For classification, re-index classes.
    val labelColName = if (algo == "classification") "indexedLabel" else "label"
    if (algo == "classification") {
      val labelIndexer = new StringIndexer()
        .setInputCol("label")
        .setOutputCol(labelColName)
      stages += labelIndexer
    }
    // (2) Identify categorical features using VectorIndexer.
    //     Features with more than maxCategories values will be treated as continuous.
    val featuresIndexer = new VectorIndexer()
      .setInputCol("features")
      .setOutputCol("indexedFeatures")
      .setMaxCategories(10)
    stages += featuresIndexer
    // (3) Learn Decision Tree.
    val dt = algo match {
      case "classification" =>
        new DecisionTreeClassifier()
          .setFeaturesCol("indexedFeatures")
          .setLabelCol(labelColName)
          .setMaxDepth(params.maxDepth)
          .setMaxBins(params.maxBins)
          .setMinInstancesPerNode(params.minInstancesPerNode)
          .setMinInfoGain(params.minInfoGain)
          .setCacheNodeIds(params.cacheNodeIds)
          .setCheckpointInterval(params.checkpointInterval)
      case "regression" =>
        new DecisionTreeRegressor()
          .setFeaturesCol("indexedFeatures")
          .setLabelCol(labelColName)
          .setMaxDepth(params.maxDepth)
          .setMaxBins(params.maxBins)
          .setMinInstancesPerNode(params.minInstancesPerNode)
          .setMinInfoGain(params.minInfoGain)
          .setCacheNodeIds(params.cacheNodeIds)
          .setCheckpointInterval(params.checkpointInterval)
      case _ => throw new IllegalArgumentException(s"Algo ${params.algo} not supported.")
    }
    stages += dt
    val pipeline = new Pipeline().setStages(stages.toArray)

    // Fit the Pipeline.
    val startTime = System.nanoTime()
    val pipelineModel = pipeline.fit(training)
    val elapsedTime = (System.nanoTime() - startTime) / 1e9
    println(s"Training time: $elapsedTime seconds")

    // Get the trained Decision Tree from the fitted PipelineModel.
    algo match {
      case "classification" =>
        val treeModel = pipelineModel.stages.last.asInstanceOf[DecisionTreeClassificationModel]
        if (treeModel.numNodes < 20) {
          println(treeModel.toDebugString) // Print full model.
        } else {
          println(treeModel) // Print model summary.
        }
      case "regression" =>
        val treeModel = pipelineModel.stages.last.asInstanceOf[DecisionTreeRegressionModel]
        if (treeModel.numNodes < 20) {
          println(treeModel.toDebugString) // Print full model.
        } else {
          println(treeModel) // Print model summary.
        }
      case _ => throw new IllegalArgumentException(s"Algo ${params.algo} not supported.")
    }

    // Evaluate model on training, test data.
    algo match {
      case "classification" =>
        println("Training data results:")
        evaluateClassificationModel(pipelineModel, training, labelColName)
        println("Test data results:")
        evaluateClassificationModel(pipelineModel, test, labelColName)
      case "regression" =>
        println("Training data results:")
        evaluateRegressionModel(pipelineModel, training, labelColName)
        println("Test data results:")
        evaluateRegressionModel(pipelineModel, test, labelColName)
      case _ =>
        throw new IllegalArgumentException(s"Algo ${params.algo} not supported.")
    }

    spark.stop()
  }

  /**
   * Evaluate the given ClassificationModel on data. Print the results.
   * @param model  Must fit ClassificationModel abstraction
   * @param data  DataFrame with "prediction" and labelColName columns
   * @param labelColName  Name of the labelCol parameter for the model
   *
   * TODO: Change model type to ClassificationModel once that API is public. SPARK-5995
   */
  private[ml] def evaluateClassificationModel(
      model: Transformer,
      data: DataFrame,
      labelColName: String): Unit = {
    val fullPredictions = model.transform(data).cache()
    val predictions = fullPredictions.select("prediction").rdd.map(_.getDouble(0))
    val labels = fullPredictions.select(labelColName).rdd.map(_.getDouble(0))
    // Print number of classes for reference.
    val numClasses = MetadataUtils.getNumClasses(fullPredictions.schema(labelColName)) match {
      case Some(n) => n
      case None => throw new RuntimeException(
        "Unknown failure when indexing labels for classification.")
    }
    val accuracy = new MulticlassMetrics(predictions.zip(labels)).accuracy
    println(s"  Accuracy ($numClasses classes): $accuracy")
  }

  /**
   * Evaluate the given RegressionModel on data. Print the results.
   * @param model  Must fit RegressionModel abstraction
   * @param data  DataFrame with "prediction" and labelColName columns
   * @param labelColName  Name of the labelCol parameter for the model
   *
   * TODO: Change model type to RegressionModel once that API is public. SPARK-5995
   */
  private[ml] def evaluateRegressionModel(
      model: Transformer,
      data: DataFrame,
      labelColName: String): Unit = {
    val fullPredictions = model.transform(data).cache()
    val predictions = fullPredictions.select("prediction").rdd.map(_.getDouble(0))
    val labels = fullPredictions.select(labelColName).rdd.map(_.getDouble(0))
    val RMSE = new RegressionMetrics(predictions.zip(labels)).rootMeanSquaredError
    println(s"  Root mean squared error (RMSE): $RMSE")
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞